Fabrication of ultrafine grained materials by imposing severe plastic deformation for improvement of mechanical and physical properties of metals has been the focus of many researches over the past few years. In this process, a sheet is subjected to repetitive shear deformation conditions by utilizing asymmetrically grooved and flat dies through alternate pressing. In this study, a 2mm thick commercial pure aluminum sheet was subjected to repetitive pressing up to four passes. Mechanical properties including, hardness and tensity were obtained. Results show that, although increasing the number of passes causes higher strength magnitude, the strength’s slope decreases. After validation of finite element modeling, strain distribution and uniformity behavior of the grooved plate were investigated using plain strain and plain stress conditions. Results show that strain in the surface and near the teeth of the die is lower than other areas.