Experimental investigation and mathematical modeling of the composite ceramic cutting tools with alumina base in the machining process of PH-hardened Austenitic-ferritic (Duplex) stainless steel

Authors

Abstract

Abstract: The lifetime of a cutting tool is an important and determinant parameter for evaluating its performance. The amount of tool abrasion affects seriously dimensions and surface quality of the working piece so that one of the main factors to determine the lifetime of a tool is the level of its wearing. For this purpose, an abrasion standard is defined for each particular tool above which the tool is not applicable any more. In the current paper, studies are concentrated on the machining of PH-hardened Austenitic-ferritic (Duplex) stainless steel (330HRC) to analyze the effect of tool wear on the lifetime of the ceramic cutting tool with Alumina base (aluminum oxide). Abrasion tool parameters like Flank wear, Crater wear, and Notch wear have been considered. To develop the mathematical models for the parameters considered in tool wear, the experimental results are applied in multi regression analysis (MRA) and the results obtained by these models are considered and analyzed by the analysis of variance (ANOVA).