Shahrood University of Technology


In this paper, a thermoelasticity solution for steady state response of thick cylinders which are subjected to pressure and external heat flux in inner surface is presented. Displacement field obeys the kinematics of the first order shear deformation theory (FSDT). It is assumed that the temperature varies both along the length and the thickness. The variation of the temperature occurs linearly through the thickness. Using energy method, the equilibrium equations and general boundary conditions are derived for the cylinder. Based on the developed analytical solution, adequate numerical results are depicted to provide an insight into the influence of the thermal and mechanical loads and boundary conditions on thermo-mechanical behavior of cylinder. Results show that shear stresses are noticeable at boundaries; moreover, temperature, displacement fields and stresses are strongly depended on length. Furthermore, the capability of the proposed method to solve any axisymmetrically cylindrical shells with general boundary conditions and thermo-mechanical loading is proven.