Analytical Solution for Buckling of Composite Sandwich Truncated Conical Shells subject to Combined External Pressure and Axial Compression Load

Author

phd student from K.N.Toosi university of technology

Abstract

Abstract: The present study deals with the buckling analysis of the laminated composite truncated conical sandwich shells with flexible core subjected to combined axial compressive load and external pressure. Higher order governing equations of the motion are presented for conical composite sandwich shells, where they are derived from the Hamilton principle. Then, by the use of Improved Higher-order Sandwich Shell Theory, the base solutions of the governing equations are obtained in the form of power series via general recursive relations. The first order shear deformation theory is used for the face sheets and a 3D-elasticity solution of weak core is employed for the flexible core. By application of various boundary conditions such as clamped and simply-supported edges, the natural frequencies of the conical composite sandwich shell are obtained. The obtained results are compared with the numerical results from FEM analysis and good agreements are achieved. An extensive parametric study is also conducted to investigate the effect of total thickness to radius ratio on the buckling load.Keywords: Buckling, Composite, Sandwich Truncated Conical Shell, Combined Load