Ultrasonic Assisted Equal Channel Angular ‎Extrusion Process ‎‎(UAECAE)‎

Document Type: Original Article

Authors

1 Department of Mechanical Engineering, Golpayegan University of Technology, Golpayegan, Iran *Corresponding author

2 Faculty of Engineering, Shahrekord University, Shahrekord, Iran

3 Faculty of Engineering, Shahrekord University, Shahrekord, Iran

Abstract

Equal channel angular extrusion (ECAE) is one of the most powerful processes for manufacturing microstructure and nanostructure ‎materials. This process is a kind of severe plastic deformation technique, which requires large extrusion force. In this study, the numerical and experimental investigation of extrusion ‎force in ultrasonic assisted equal channel angular extrusion process (UAECAE) is carried out. ABAQUS Software is used for 2D ‎finite element analysis of the process considering superimposed ultrasonic vibrations to the round billet work material. Experimentally, the conventional and ultrasonic assisted ECAE are performed with copper material to validate simulation results. The reduction in extrusion force is observed due to ultrasonic vibrations. In order to achieve more ‎average force reduction, it is recommended that the ‎extrusion speed decreases and (or) vibrations amplitude ‎increases. Stress and strain distributions are numerically investigated in various vibrational conditions and die angles. The best die angle to obtain optimum force ‎reduction is 120º. In other die angles, vibrations ‎amplitudes of 15‎ μm‎ and higher ‎is necessary. Ultrasonic vibrations lead to oscillatory stresses with reduced ‎average value, but do not influence the amount of plastic strain ‎distribution. Achieving the beneficial products in ‎ECAE requires heavy special equipment, whereas using UAECAE will lead to more accessible equipment. ‎Finally, some optimal process parameters such as die angle, vibrations amplitude, for the proper application of these vibrations are ‎proposed.

Keywords


[1]     Chang, T. C., Wang, J. Y., Ming, O. C., and Lee. S., “Grain ‎refining of Magnesium Alloy AZ31 by Rolling”, Journal of ‎Materials Processing Technology, Vol. 140, No. 1, 2003, pp. ‎‎588- 591. ‎

[2]     ‎‎Perez-Prado, M. T., Del Valle, J. A., and Ruano, O. A., ‎‎“ Achieving high Strength in Commercial Mg cast alloys Through ‎‎large Strain Rolling”, Materials Letters, Vol. 59, No. 26, 2005, ‎pp. 3299- 3303. ‎

[3]     ‎‎Zhang, Q. L., Lu, C., Zhu, Y. P., Ding, Y. J., and He, J. H., ‎‎“ Effect of Rolling Method on Microstructure and Properties of ‎‎AZ31 Magnesium Alloy Thin Sheet”, Chinese Journal of ‎Nonferrous Metals, Vol. 14, No. 3, 2004, p.p. 391- 397. ‎

[4]     ‎‎Segal, V. M., “The Method of Material Preparation for ‎Subsequent Working”, Patent of the USSR, No. ‎‎575892, 1977. ‎

[5]     ‎‎Samuel, T., Adedokun, A., “Review on Equal Channel Angular ‎Extrusion as a Deformation and Grain ‎Refinement process”, ‎Journal of Emerging Trends in Engineering and Applied ‎Sciences, Vol. 2, No. 2, 2011, pp. 360- 363.

[6]     ‎‎Sanusi, K. O., Makinde, O. D., and Oliver, G. J., “Equal Channel ‎Angular Pressing Technique for The Formation of Ultra-‎Fine ‎Grained Structures”, South African Journal of Science, Vol. 108, ‎No. 9-10, 2012, pp. 1- 7. ‎

[7]     ‎‎Yu, C. L., Sun, P. L., Kao, P. W., and Chang, C. P., “Mechanical ‎Properties of Submicron-Grained Aluminum”, Scripta Materialia, ‎Vol. 52, No. 5, 2005, pp. 359- 363. ‎

[8]     ‎Hung, J. C., Tsai, Y. C., and Hung, C., “Frictional Effect o ‎Ultrasonic-Vibrations on Upsetting”, Ultrasonics, Vol. 46, No. 3, ‎‎2007, pp. 277- 284. ‎

[9]     ‎Bunget, C., Ngaile, G., “Influence of Ultrasonic Vibrations on ‎Micro-Extrusion”, Ultrasonics, Vol. 51, No. 5, 2011, pp. 606- ‎‎616. ‎

[10]  ‎Blaha, F., Langenecker, B., “Tensile Deformation of Zinc ‎Crystal Under Ultrasonic Vibration”, Die Natur wissenschaften, ‎Vol. 42, No. 20, 1955, pp. 542- 556. ‎

[11]  ‎Langenecker, B., “Effects of Ultrasound on Deformation ‎Characteristics of Metals”, IEEE Transactions on Sonics and ‎Ultrasonics, Vol. 13, No. 1, 1966, pp. 1- 8. ‎

[12]  ‎Siddiq, A., El Sayed, T., “Ultrasonic-Assisted ‎Manufacturing Processes: Variational Model and Numerical ‎‎Simulations”, Ultrasonics, Vol. 52, No. 4, 2012, pp. 521-529. ‎ ‎

[13]  ‎Djavanroodi, F., Ahmadian, H., Koohkan, K., and Naseri, R., “Ultrasonic Assisted-ECAP”, Ultrasonics, Vol. 53, No. 6, 2013, ‎pp. 1089- 1096. ‎

[14]  ‎Balasundar, I., Raghu, T., “Effect of Friction Model in ‎Numerical Analysis of Equal Channel Angular Pressing Process”, ‎Materials and Design, Vol. 31, No. 1, 2010, pp. 449- 457. ‎

[15]  ‎Dumoulin, S., Roven, H. J., Werenskoid, J. C., and Valberg, ‎H. S., “Finite Element Modeling of Equal Channel Angular ‎Pressing: Effect of Material Properties, Friction and Die ‎Geometry”, Materials Science and Engineering A, Vol. 410-411, ‎No. 1, 2005, pp. 248- 251.

[16]  ‎Nagasekhar, A. V., Yoon, S. C., Tick-Hon, Y., and Kim, H. S., ‎‎“An Experimental Verification of the Finite Element Modeling of ‎Equal Channel Angular Pressing”, Computational Materials ‎Science, Vol. 46, No. 2, 2009, pp. 347- 351. ‎

[17]  ‎Luis-Perez, C. J., Luri-Irigoyen, R., and Gaston-Ochoa, D., ‎‎“Finite Element Modeling of an Al-Mn Alloy by Equal Channel ‎Angular Extrusion (ECAE)”, Journal of Materials Processing ‎Technology, Vol. 153-154, 2004, pp. 846- 852. ‎

[18]  ‎Eivani, A. R., and Karimi Taheri, A., “An Upper Bound Solution ‎of ECAE Process with Outer Curved Corner”, Journal of ‎Materials Processing Technology, Vol. 182, No. 1-3, 2007, pp. ‎‎555- 563.‎

[19]  ‎Eivani, A. R., Ahmadi, S., Emadoddin, E., Valipour, S., ‎ and Karimi Taheri, A., “The Effect of Deformations Passes on the ‎Extrusion Pressure in Axi-Symmetric Equal Channel Angular ‎Extrusion”, Computational Materials Science, Vol. 44, No. 4, ‎‎2009, pp. 1116- 1125.

[20]  ‎Eivani, A. R., Karimi Taheri, A., “The Effect of Dead Metal ‎Zone Formation on Strain and Extrusion Force During Equal ‎Channel Angular Extrusion”, Computational Materials Science, ‎Vol. 42, No. 1, 2008, pp. 14- 20. ‎

[21]  ‎Kumar, V. C., Hutchings, I. M., “Reduction of the Sliding ‎Friction of Metals by the Application of Longitudinal or Transverse ‎Ultrasonic Vibration”, Tribology International, Vol. 37, No. 10, ‎‎2004, pp. 833- 840. ‎

[22]  ‎Razavi Beni, H., Tadi Beni, Y., and Biglari, F. R., “An ‎Experimental-Numerical Investigation of Metal Spinning ‎‎Process”, Proceedings of the Institution of Mechanical ‎Engineers, Part C: Journal of Mechanical Engineering Science, ‎Vol. 225, No. 3, 2011, pp. 509- 519. ‎

[23]  ‎‎Soleimani Marghmaleki, I., Tadi Beni, Y., “Thermo-‎Mechanical Investigation of Spinning Process”, Arabian Journal ‎for Science and Engineering, Vol. 39, No. 2, 2014, pp. 1209-‎‎1217. ‎

[24]  ‎‎Amini, S., Soleimanimehr, H., Nategh, M. J., Abudollah, ‎A., and Sadeghi, M. H., “FEM Analysis of Ultrasonic-Vibration-‎‎Assisted Turning and The Vibratory Tool”, Journal of Materials ‎Processing Technology, Vol. 201, No. 1, 2008, pp. 43- 47. ‎

[25]  ‎‎Liang, Z., Wu, Y., Wang, X., and Zhao, W., “A New Two-‎Dimensional Ultrasonic Assisted Grinding (2D-UAG) Method ‎and its Fundamental Performance in Monocrystal Silicon Machining”, ‎International Journal of Machine Tools and Manufacture, Vol. ‎‎50, No. 8, 2010, pp. 728- 736. ‎

[26]  ‎Hayashi, M., Jin, M., Thipprakmas, S., Murakawa, M., ‎Hung, J. C., Tsai, Y. C., and Hung, C. H., “Simulation of ‎Ultrasonic-‎Vibrations Drawing Using the Finite Element Method ‎‎(FEM)”, Journal of Materials Processing Technology, Vol. 140, ‎No. 1, 2003, pp. 30- 35. ‎  ‎

[27]  ‎Huang, M., Lucas, M., and Adams, M. J., “Influence of ‎Ultrasonics on Upsetting of a Model Paste”, Ultrasonics, Vol. 40, ‎‎2002, pp. 43- 48. ‎ ‎

[28]  ‎‎Lucas, M., Daud, Y., “A Finite Element Model of Ultrasonic ‎Extrusion”, Journal of Physics: Conference Series, Vol. 181, ‎No. 1, 2009. ‎

[29]  ‎‎Akbari Mousavi, S. A. A., Feizi, H., “Simulation of ‎Ultrasonic Vibrations Extrusion Using the Finite Element ‎Method”, ‎Journal of Materials Processing Technology, Vol. 187-188, ‎‎2007, pp. 657- 661. ‎

[30]  ‎Ahmadi, F., Farzin M., “Finite Element Analysis of ‎Ultrasonic-Assisted Equal Channel Angular Pressing”, Proceedings ‎of the Institution of Mechanical Engineers, Part C: Journal of ‎Mechanical Engineering Science, Vol. 228, No. 11, 2014, pp. ‎‎1859- 1868. ‎ ‎

[31]  Krishnaiah, A., Kumaran, K., Chakkingal, U., and Venugopal, ‎P., “Finite Element Analysis of Equal Channel Angular ‎Extrusion ‎‎(ECAE) Process”, International Symposium for Research ‎Scholars (ISRS-2004), IIT Madras, India, December 20- 22, ‎‎2004. ‎

[32]  ‎Djavanroodi, F., Ebrahimi, M., “Effect of Die Channel ‎Angle, Friction And Back Pressure in the Equal Channel ‎Angular ‎Pressing Using 3D Finite Element Simulation”, Materials Science ‎and Engineering A, Vol. 527, 2010, pp. 1230- 1235. ‎

[33]  ‎Jimma, T., Kasuga, Y., Iwaki, N., Miyazawa, O., Mori, E., ‎Ito, K., and Hatano, H., “An Application of Ultrasonic ‎Vibrations to the ‎Deep Drawing Process”, Journal of Materials Processing ‎Technology, Vol. 80-81, 1998, pp. 406- 412. ‎ ‎

[34]  ‎Razavi, H., Nategh, M. J., and Abdullah, A., “Analytical ‎Modeling and Experimental Investigation of Ultrasonic-Vibrations ‎Assisted Oblique Turning, Part III: Experimental Investigation”, ‎International Journal of Mechanical Sciences, Vol. 63, No. 1, ‎‎2012, pp. 25- 36. ‎ ‎

[35]  ‎Razavi, H., Nategh, M. J., and Soleimanimehr, H., “An ‎Investigation of Lateral Surface Hardness and Related Cutting ‎Forces in One-Directional Ultrasonic-Vibrations Assisted Turning”, ‎Advanced Materials Research, Vol. 445, 2012, pp. 1041- 1046.‎

[36]  ‎Razavi, R., Nategh, M. J., Abdullah, A., and Soleimanimehr, ‎H., “Analytical and Experimental Analysis of the ‎Kinematics of ‎Relative Motion Between the Cutting Tool and Workpiece in ‎Ultrasonic-Vibrations ‎Assisted Turning”, Modares Mechanical ‎Engineering, Vol. 11, No. 1, 2011, pp. 89- 101. ‎

[37]  ‎Srinivasan, R., “Computer Simulation of the Equal Channel ‎Angular Extrusion (ECAE) Process”, Scripta Materialia, Vol. 44, ‎No. 1, 2001, pp. 91- 96.