[1] Tadi Beni, Y., Karimipour, I., and Abadyan, M., “Modeling the Instability of Electrostatic Nano-Bridges and Nano-Cantilevers Using Modified Strain Gradient Theory”,

Applied Mathematical Modelling,

Vol. 39, No.9, 2015, pp. 2633-2648.

## [2] Gasparini, A. M., Saetta, A. V., and Vitaliani, R. V., “On the Stability and Instability Regions of Non-Conservative Continuous System under Partially Follower Forces”, Computer Methods in Applied Mechanics and Engineering, Vol. 124, No. (1-2), 1995, pp. 63-78.

[3] Osterberg, P. M., Senturia, S. D., “M-TEST: a Test Chip for MEMS Material Property Measurements Using Electrostatically Actuated Test Structures”, Journal of Microelectromechanical Systems, Vol. 6, No. 2, 1997, pp. 107-118.

[4] Osterberg, P. M., Gupta, R. K., Gilbert, J. R., and Senturia, S. D., “Quantitative Models for the Measurement of Residual Stress, Poisson Ratio and Young’s Modulus Using Electrostatic Pull-in of Beams and Diaphragms”, Proceedings of the Solid- State Sensor and Actuator Workshop, Hilton Head, SC, 1994.

[5] Sadeghian, H., Rezazadeh, G., Osterberg, P., “Application of the Generalized Differential Quadrature Method to the Study of Pull-in Phenomena of MEMS Switches”, Journal of Microelectromechanical Systems, Vol. 16, No. 6, 2007, pp. 1334-1340.

[6] Salekdeh, Y. A., Koochi, A., Beni, Y. T., and Abadyan, M., “Modeling Effect of Three Nano-Scale Physical Phenomena on Instability Voltage of Multi-Layer MEMS/NEMS: Material Size Dependency, Van Der Waals Force and Non-Classic Support Conditions”, Trends in Applied Sciences Research, Vol. 7, No. 1, 2012, pp. 1-17.

[7] Batra, R. C., Porfiri, M., Spinello, D., “Review of Modeling Electrostatically Actuated Microelectromechanical Systems”, Smart Materials and Structures, Vol. 16, No. 6, 2007, R23-R31.

[8] Lin, W. H., Zhao, Y. P., “Pull-in Instability of Micro-Switch Actuators: Model Review”, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 9, No. 2, 2008, pp.175-184.

[9] Koiter, W. T., “Couple-Stresses in the Theory of Elasticity: I and II.”, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B, 1964, pp. 6717-6744.

[10] Mindlin, R. D., Tiersten, H. F., “Effects of Couple-Stresses in Linear Elasticity”, Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, 1962, pp. 415-448.

[11] Toupin, R. A., “Elastic Materials with Couple-Stresses, Archive for Rational Mechanics and Analysis”, Vol. 11, No. 1, 1962, pp. 385-414.

[12] Anthoine, A., “Effect of Couple-Stresses on the Elastic Bending of Beams”, International Journal of Solids and Structures, Vol. 37, No. 7, 2000, pp. 1003-1018.

[13] Yang, F., Chong, A. C. M., Lam, D. C. C., and Tong, P., “Couple Stress Based Strain Gradient Theory for Elasticity”, International Journal of Solids and Structures, Vol. 39, No. 10, 2002, pp. 2731-2743.

[14] Xia, W., Wang, L., and Yin, L., “Nonlinear Non-Classical Microscale Beams: Static Bending, Post Buckling and Free Vibration”, International Journal of Engineering Science, Vol. 48, No. 12, 2010, pp. 2044-2053.

[15] Asghari, M., Ahmadian, M. T., Kahrobaiyan, M. H., and Rahaeifard, M., “On the Size-Dependent Behavior of Functionally Graded Micro-Beams”, Materials and Design, Vol. 31, No. 5, 2010, pp. 2324-2329.

[16] Rong, H., Huang, Q. A., Nie, M., and Li, W., “An Analytical Model for Pull-in Voltage of Clamped–Clamped Multilayer Beams”, Sensors and Actuators A: Physical, Vol. 116, No. 1, 2004, pp. 15-21.

[17] Yang, F., Chong, A. C. M., Lam, D. C. C., and Tong, P., “Couple Stress Based Strain Gradient Theory for Elasticity”, International Journal of Solids and Structures, Vol. 39, No. 10, 2002, pp. 2731-2743.

[18] Shengli, K., Shenjie, Z., Zhifeng, N., and Kai, W., “The Size-Dependent Natural Frequency of Bernoulli–Euler Micro-Beams”, Journal of Engineering Science, Vol. 46, No. 5, 2008, pp. 427-437.

[19] Ma, H. M., Gao, X. L., and Reddy, J. N., “A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory”, Journal of the Mechanics and Physics of Solids, Vol. 56, No. 12, 2008, pp. 3379-3391.

[20] Tadi Beni, Y., Koochi, A., and Abadyan, M., “Theoretical Study of the Effect of Casimir Force, Elastic Boundary Conditions and Size Dependency on the Pull-In Instability of Beam-Type NEMS”,

Physica E: Low-dimensional Systems and Nanostructures,

Vol. 43, No. 4, 2011, pp.979-988.

[21] Zhao, J., Zhou, S., Wanga, B., and Wang, X., “Nonlinear Microbeam Model Based on Strain Gradient Theory”, Applied Mathematical Modelling, Vol. 36, No. 6, 2012, pp. 2674-2686.

[22] Freeman, J. A., Skapura, D. M., “Neural Networks: Algorithms, Applications, and Programming Techniques”, Addision-Wesley, 1992.

[23] Gao, D., Kinouchi, Y., Ito, K., and Zhao, Z., “

Neural Networks for Event Extraction from Time Series: A Back Propagation Algorithm Approach, Future Generation Computer Systems”, Vol. 21, No. 7, 2005, pp. 1096-1105.

[24] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning Representations by Back Propagating Error”, Nature, Vol. 323, 1986, pp. 533-536.

[25] Zhang, H., Wei, W., and Mingchen, Y., “

Boundedness and Convergence of Batch Back-Propagation Algorithm with Penalty for Feedforward Neural Networks”, Neurocomputing, Vol. 89, 2012, pp. 141-146.

[26] Holland, J. H., “Adaption in Natural and Artificial Systems”, Ann Arbor: University of Michigan Press, 1975.

[27] He, Y., Guo, D., and Chu, F., “Using Genetic Algorithms and Finite Element Methods to Detect Shaft Crack for Rotor-Bearing System”, Mathematics and Computers in Simulation, Vol. 57, No. 1-2, 2001, pp. 95-108.

[28] Wong, M. L. D., Nandi, A. K., “Automatic Digital Modulation Recognition Using Artificial Neural Network and Genetic Algorithm”, Signal Processing, Vol. 84, No. 2, 2004, pp. 351-365.

[29] Tang, K. S., Man, K. F., Kwong, S., and He, O., “Genetic Algorithms and Their Applications”, IEEE Signal Processing Magazine, Vol. 13, No. 6, 1996, pp. 22-37.

[30] Demuth, H., Beale M., Matlab Neural Networks Toolbox, User’s Guide, The Math Works, Inc.,

http://www.mathworks.com, 2001.