[1] Tortonese, M., Yamada, H., Barrett, R. C., and Quate, C. F., “Atomic Force Microscopy Using a Piezoresistive Cantilever”, Solid-State Sensors and Actuators, Vol. 44, 1991, pp. 448–451.
[2] Mahmoodi, S. N., Jalili, N., “Non-Linear Vibrations and Frequency Response Analysis of Piezoelectrically Driven Microcantilevers”, Int. J. Non. Linear. Mech, Vol. 42, 2007, pp. 577–587.
[3] Wolf, K., Gottlieb, O., “Nonlinear Dynamics of a Noncontacting Atomic Force Microscope Cantilever Actuated by a Piezoelectric Layer”, J. Appl. Phys, Vol. 91, 2002, pp. 701-720.
[4] Sokmen, U., Stranz, A., Waag, A., Ababneh, A., Seidel, H., Schmid, U., and Peiner, E., “Evaluation of Resonating Si Cantilevers Sputter-Deposited with AIN Piezoelectric thin Films for Mass Sensing Applications”, J. micromechanics and microengineering, Vol. 20, 2010, pp. 4701-4720.
[5] Mahmoodi, S. N., Daqaq, M. F., and Jalili, N., “On the Nonlinear-Flexural Response of Piezoelectrically Driven Microcantilever Sensors”, Sensors Actuators A Phys, Vol. 153, 2009, pp. 171–179.
[6] Song, Y., Bhushan, B., “Finite-Element Vibration Analysis of Tapping-Mode Atomic Force Microscopy in Liquid”, Ultramicroscopy, Vol. 107, 2007, pp. 1095–1104.
[7] Vazquez, J., Rivera, M. A., Hernando, J., and Sanchez-Rojas, J. L., “Dynamic Response of Low Aspect Ratio Piezoelectric Microcantilevers Actuated in Different Liquid Environments”, J. Micromechanics Microengineering, Vol. 19, 2008. pp. 15020-15040.
[8] Naik, T., Longmire, E. K., and Mantell, S. C., “Dynamic Response of a Cantilever in Liquid Near a Solid Wall”, Sensors Actuators A Phys, Vol. 102, 2003, pp. 240–254.
[9] Razzazade, S., “Vibration Analysis of Multi -Layered Piezoelectric Microcantilever of AFM in Amplitude Mode in Air”, Iran University of Science and Technology, 2013.
[10] Lee, H. L., Chang, W.J., “Sensitivity Analysis of a Cracked Atomic Force Microscope Cantilever”, 2012, pp. 34-56.
[11] Farokh Payam, A., “Sensitivity of Flexural Vibration Mode of the Rectangular Atomic Force Microscope Micro Cantilevers in Liquid to the Surface Stiffness Variations”, Ultramicroscopy, Vol. 135, 2013, pp. 84–88.
[12] Korayem, M. H., Ghaderi, R., “Nonlinear Flexural Vibration of AFM Multi-Layered Piezoelectric Microcantilever Under Tip-Sample Interaction”, J. Lat. Am. Appl. Res, Vol. 43, 2013, pp. 87–94.
[13] Kucera, M., Manzaneque, T., Sanchez, J. L., Bittner, A., and Schemid., “Q-Factor Enhancement for Self Actuated Self-sensing Piezoelectric MEMS Resonators Applying a Lock in Driven Feedback Loop”, J. micromechanics and microengineering, Vol. 23, 2013, pp. 187–194.
[14] Ansari, R., Ashrafi, M. A., Hosseinzadeh, S., and Firouznia, Z., “Vibration of Piezoelectric Nanowires Including Surface Effects,” J. Nanostructures, Vol. 4, 2014, pp. 167–176.
[15] Taghizade, M., “Sensitivity Analysis of an AFM Piezoelectric Micro-Beam Vibration by FEM in Various Environments in the Tapping”, Iran University of Science and Technology, 2016.
[16] Riesch, C., Reichel, E. K., Keplinger, F., and Jakoby, B., “Characterizing Vibrating Cantilevers for Liquid Viscosity and Density Sensing”, J. Sensors, 2008, pp. 57-89.
[17] Hosaka, H., Itao, K., and Kuroda, S., “Damping Characteristics of Beam-Shaped Micro-Oscillators”, Sensors Actuators A Phys, Vol. 49, 1995, pp. 87–95.
[18] Lin, Y., “Vibration Analysis of Timoshenko Beams Traversed by Moving Loads”, Journal of Marine Science and Technology, Vol. 2, 1994, pp. 25–35.
[19] Korayem, A. H., Korayem, M. H., and Ghaderi, R., “Vibrational Analysis of Single-Layered Piezoelectric AFM Microcantilever in Amplitude Mode by Considering the Capillary Force”, Eur. Phys. J. Appl. Phys, Vol. 68, 2014, pp. 30402-30422.
[20] Korayem, A. H., Korayem, M. H., and Ghaderi, R., “FEM Analysis of the Vibrational Motion of Oblique Piezoelectric Microcantilever in the Vicinity of a Sample Surface in Liquid”, Precis. Eng, Vol. 42, 2015, pp. 208–217.
[21] Cukier, R. I., Levine, H. B., and Shuler, K. E., “Nonlinear Sensitivity Analysis of Multiparameter Model Systemsˮ, Journal of computational physics, Vol. 26, 1978, pp.1-42.