Document Type : Original Article


1 Department of Mechanical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Dipartimento di ing. Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy

3 Department of Industrial Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran


Prediction of creep life for a ferritic steel plate is significant in the context of its application as an element of steam generating systems. In this paper, the issue of elevated temperature creep in 2.25Cr–1Mo steel was investigated in detail, including the mechanism and the compatibility of hyperbolic sine modeling methodology for the description of steady state creep behavior of this alloy. Creep rupture tests were conducted on the thin foil samples at an elevated temperature ranging from 973 to 1073 K at various stresses between 90 to 210 MPa. A hyperbolic sine model is then used to fit the experimental creep data and the corresponding best fit parameters are provided. Using these parameters, a finite element analysis employing ABAQUS was carried and the reliability of the hyperbolic sine model was investigated in relation to the creep curve and creep life in the steady state creep area. The main outcome of the current study is creep characterisation of            2.25Cr–1Mo steel foils at extreme elevated temperature and to propose a finite element model for simulating this condition which is not reported so far. The results of experimental, constitutive analysis and finite element simulation were compared to each other and it was shown that they are in a good agreement.


Main Subjects

[1]     Alipour. R., Nejad, A. F., Creep Behaviour Characterisation of a Ferritic Steel Alloy Based on the Modified Theta-Projection Data at an Elevated Temperature, International Journal of Materials Research, Vol. 107, No. 5, 2016, pp. 406-412, DOI.10.3139/146.111362.
[2]     Huang, X. Z., Wang, D., and Yang, Y. T., Effect of Precipitation on Intergranular Corrosion Resistance of 430 Ferritic Stainless Steel, Journal of Iron and Steel Research, International, Vol. 22, No.11, 2015, pp. 1062-1068, DOI.10.1016/S1006-706X(15)30113-8.
[3]     Gao, F., Yu, F. X., Liu, F. T., and Liu Z. Y., Hot Deformation Behavior and Flow Stress Prediction of Ultra Purified 17% Cr Ferritc Stainless Steel Stabilized with Nb and Ti, Journal of Iron and Steel Research, International, Vol. 22, No. 9, 2015, pp. 827-836, DOI.10.1016/S1006-706X(15)30077-7.
[4]     Pardoen, T., Massart, T. J., Interface Controlled Plastic Flow Modelled by Strain Gradient Plasticity Theory, Comptes Rendus Mécanique, Vol. 340, No. 4-5, 2012, pp. 247-260, 4, DOI.10.1016/. 2012.02.008.
[5]     Goyal, S., Laha, K., Creep Life Prediction of 9Cr–1Mo Steel Under Multiaxial State of Stress, Materials Science and Engineering: A, Vol. 615, No. 1, 2014, pp. 348-360, DOI.1016 /j.msea .2014.07.096.
[6]     Ren, S., Mazière, M., Forest, S., Morgeneyer, T. F., and Rousselier, G., A Constitutive Model Accounting for Strain Ageing Effects on Work-Hardening, Application to a C–Mn Steel, Comptes Rendus Mécanique, Vol. 345, No.12, 2017, pp. 908-921, DOI. 10.1016/j.crme.2017.09.005
[7]     Goyal, S., Laha, K., Das, C., Panneerselvi, S., and Mathew, M., Finite Element Analysis of Effect of Triaxial State of Stress on Creep Cavitation and Rupture Behaviour of 2.25 Cr–1Mo Steel, International Journal of Mechanical Sciences, Vol. 75, No. 1, 2013, pp. 233-243, DOI. 10.1016 /j.ijmecsci.2013.07.005.
[8]     Goyal, S., Laha, K., Das, C., Selvi, S. P., and Mathew, M., Finite Element Analysis of Uniaxial and Multiaxial State of Stress on Creep Rupture Behaviour of 2.25 Cr–1Mo Steel, Materials Science and Engineering: A, Vol. 563, No. 1, 2013, pp. 68-77, DOI. 10.1016/j.msea.2012.11.038.
[9]     Humphries, S., Yeung, W., and Callaghan, M. D., The Effect of Stress Relaxation Loading Cycles on the Creep Behaviour of 2.25 Cr–1Mo Pressure Vessel Steel, Materials Science and Engineering: A, Vol. 528, No. 3, 2011, pp. 1216-1220, DOI. 10.1016/j.msea.2010.10.014.
[10]  Abedini, M., Mutalib, A. A., Raman, S. N., Alipour, R., and Akhlaghi, E., Pressure–Impulse (P–I) Diagrams for Reinforced Concrete (RC) Structures: A Review, Archives of Computational Methods in Engineering, 2018, pp. 1-35, DOI. 10.1007/s11831-018-9260-9
[11]  Kumar, M. M., Joshna, K., Markendeya, R., and Rawat, M., Effect of Steamside Oxidation and Fireside Corrosion Degradation Processes on Creep Life of Service Exposed Boiler Tubes, International Journal of Pressure Vessels and Piping, Vol. 144, No. 1, 2016, pp. 45-48, DOI. 10.1016.2016.05.001.
[12]  Nguyen, T. D., Sawada, K., Kushima, H., Tabuchi, M., and Kimura, K., Change of Precipitate Free Zone During Long-Term Creep in 2.25 Cr–1Mo Steel, Materials Science and Engineering: A, Vol. 591, No. 1, 2014, pp. 130-135, DOI. 10.1016/ j.msea.2013.10.101.
[13]  Chen, J., Liu, H., Pan, Z., Shi, K., Zhang, H., and Li, J., Carbide E-Volution and Service Life of Simulated Post Weld Heat Treated 2.25 Cr–1Mo Steel, Materials Science and Engineering: A, Vol. 622, No. 1, 2015, pp. 153-159.
[14]  Chaudhuri, S., Roy, N., and Ghosh, R., Modelling High Temperature Creep of Cr Mo steel, Acta Metallurgica et Materialia, Vol. 41, No. 1, 1993, pp. 273-278.
[15]  Hore, S. Ghosh, R., Computer Simulation of the High Temperature Creep Behaviour of Cr–Mo Steels, Materials Science and Engineering: A, Vol. 528, No. 19-20, 2011, pp. 6095-6102.
[16]  Jelwan, J., Chowdhury, M., and Pearce, G., Design for Creep: a Critical Examination of Some Methods, Engineering Failure Analysis, Vol. 27, No. 1, 2013, pp. 350-372.
[17]  Wang, S. B., Chang, X. F., and Key, J., New Insight into High-Temperature Creep Deformation and Fracture of T92 Steel in Volving Precipitates, Dislocations and Nanovoids, Materials Characterization, Vol. 127, No. 1, 2017, pp. 1-11, DOI. 10.1016/j.matchar.2017.01.025.
[18]  Vershinina, T., Leont'eva-Smirnova, M., Dislocation Density E-Volution in the Process of High-Temperature Treatment and Creep of EK-181 Steel, Materials Characterization, Vol. 125, No. 1,  2017, pp. 23-28, DOI.10.1016/j.matchar. 2017. 01. 018.
[19]  Lasseux, D., Valdés-Parada, F. J., On the Developments of Darcy's Law to Include Inertial and Slip Effects, Comptes Rendus Mécanique, Vol. 345, No. 9, 2017, pp. 660-669, DOI.10.1016 2017.06.005.
[20]  Kang, G. Z., Zhang, J., Sun, Y. F., and Kan, Q. H., Uniaxial Time-Dependent Ratcheting of SS304 Stainless Steel at High Temperatures, Journal of Iron and Steel Research, International, Vol. 14, No. 1, 2007, pp. 53-59, DOI.10.1016/S1006-706X(07)60012-0.
[21]  Toulemonde, C., Masson, R., and El Gharib, J., Modeling the Effective Elastic Behavior of Composites: a Mixed Finite Element and Homogenisation Approach, Comptes Rendus Mécanique, Vol. 336, No. 3, 2008, pp. 275-282, DOI.10.1016/j.crme.2007.11.024.
[22]  Khayatzadeh, S., Tanner, D. W. J., Truman, C. E., P. Flewitt, E. J., and Smith, D. J., Creep Deformation and Stress Relaxation of a martensitic P92 steel at 650 °C, Engineering Fracture Mechanics, 2017, No. 1,  DOI.10.1016 /j.engfracmech.2017.02.008
[23]  Boccaccini, D. N., Frandsen, H. L., Sudireddy, B. R., Blennow, P., Persson, Å. H., Kwok, K., and et al., Creep Behaviour of Porous Metal Supports for Solid Oxide Fuel Cells, International Journal of Hydrogen Energy, Vol. 39, No.36, 2014, DOI. 10.1016/j.ijhydene.2014.07.138.
[24]  Strang, A., Cawley, J., and Greenwood, G. W., Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications, 1997.
[25]  Wen, J. F., Tu, S. T., Gao, X. L., and Reddy, J. N., Simulations of Creep Crack Growth in 316 Stainless Steel Using a Novel Creep-Damage Model, Engineering Fracture Mechanics, Vol. 98, No. 1, 2013, pp. 169-184, DOI.10.1016/2012.12.014.
[26]  Lin, Y. C., Xia, Y. C., Ma, X. S., Jiang, Y. Q., and Chen, M. S., High-Temperature Creep Behavior of Al–Cu–Mg Alloy, Materials Science and Engineering: A, Vol. 550, No. 1, 2012, pp. 125-130, DOI.10.1016/j.msea.2012.04.044.
[27]  Lin, Y. C., Xia, Y. C., Ma, X. S., Jiang, Y. Q., and Li, L. T., Modeling the Creep Behavior of 2024-T3 Al Alloy, Computational Materials Science, Vol. 67, No. 1, 2013, pp. 243-248,
[28]  Kariya, Y., Otsuka, M., and Plumbridge, W., The Constitutive Creep Equation for a Eutectic Sn-Ag Alloy Using the Modified Theta-Projection Concept, Journal of Electronic Materials, Vol. 32,  No. 12, 2003, pp. 1398-1402, DOI.1007/s11664-003-0107-1
[29]  Day, W. D., Gordon, A. P., A Modified Theta Projection Creep Model for a Nickel-Based Super-Alloy, in ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013, pp. V07AT26A002.
[30]  Evans, M., The θ Projection Method and Small Creep Strain Interpolations in a Commercial Titanium Alloy, Journal of Materials Science, Vol. 36, No. 12, 2001, pp. 2875-2884, DOI. 10.1023/a:1017946218860.
[31]  Milne, I., Ritchie, R. O., and Karihaloo, B. L., Comprehensive Structural Integrity: Cyclic Loading and Fatigue Vol. 4: Elsevier, 2003.0080441556.
[32]  Norton, F. H., The Creep of Steel at High Temperatures: McGraw-Hill Book Company, Incorporated, 1929.
[33]  Mustata, R., Hayhurst, D., Creep Constitutive Equations for a 0.5 Cr 0.5 Mo 0.25 V Ferritic Steel in the Temperature Range 565 C–675 C, International Journal of Pressure Vessels and Piping, Vol. 82, No. 5, 2005, pp. 363-372.
[34]  Pu, E. X., Feng, H., Liu, M., Zheng, W. J., Dong, H., and Song, Z. G., Constitutive Modeling for Flow Behaviors of Superaustenitic Stainless Steel S32654 during Hot Deformation, Journal of Iron and Steel Research, International, Vol. 23, No. 2, 2016, pp. 178-184, DOI. 10.1016/S1006-706X(16)30031-0.
[35]  McQueen, H., Yue, S., Ryan, N., and Fry, E., Hot Working Characteristics of Steels in Austenitic State, Journal of Materials Processing Technology, Vol. 53, 1995, pp. 293-310. DOI. 10.1016/0924-0136(95)01987-P.
[36]  Wang, S., Luo, J., Hou, L., Zhang, J., and Zhuang, L., Identification of the Threshold Stress and True Activation Energy for Characterizing the Deformation Mechanisms During Hot Working, Materials & Design, Vol. 113, No. 1, 2017, pp. 27-36. DOI. 10.1016/j.matdes.2016.10.018.
[37]  Reyes-Calderón, F., Mejía, I., and Cabrera, J., Hot Deformation Activation Energy (Q HW) of Austenitic Fe–22Mn–1.5 Al–1.5 Si–0.4 C TWIP Steels Microalloyed with Nb, V, and Ti, Materials Science and Engineering: A, Vol. 562, No. 1, 2013, pp. 46-52, DOI. 10.1016/j.msea.2012.10.091.
[38]  McQueen, H., Ryan, N., Constitutive Analysis in Hot Working, Materials Science and Engineering: A, Vol. 322, No. 1, 2002, pp. 43-63.
[39]  Cowan, M., Khandelwal, K., Modeling of High Temperature Creep in ASTM A992 Structural Steels, Engineering Structures, Vol. 80, No. 1, 2014, pp. 426-434, DOI. 10.1016/j.engstruct.2014.09.020.
[40]  Brnic, J., Canadija, M., Turkalj, G., and Lanc, D., Structural Steel ASTM A709—Behavior at Uniaxial Tests Conducted at Lowered and Elevated Temperatures, Short-Time Creep Response, and Fracture Toughness Calculation, Journal of Engineering Mechanics, Vol. 136, No. 9, 2010, pp. 1083-1089, DOI. 10.1061/(ASCE)EM.1943-7889.0000152.
[41]  Fields, B., Fields, R., Elevated Temperature Deformation of Structural Steel, 1988.
[42]  Kodur, V., Dwaikat, M., Effect of High Temperature Creep on the Fire Response of Restrained Steel Beams, Materials and Structures, Vol. 43, No. 10, 2010, pp. 1327-1341, DOI. 10.1617/s11527-010-9583-y.
[43]  Gales, J. A., Bisby, L. A., and Stratford, T., New Parameters to Describe High-Temperature Deformation of Prestressing Steel Determined Using Digital Image Correlation, Structural Engineering International, Vol. 22, No. 4, 2012, pp. 476-486.
[44]  Yang, M., Wang, Q., Song, X. L., Jia, J., and Xiang, Z. D., On the Prediction of Long Term Creep Strength of Creep Resistant Steels, International Journal of Materials Research, Vol. 107, No. 2, 2016, pp. 133-138, DOI.  /10.3139/146.111322.
[45]  Liao, C., Wu, H., Wu, C., Zhu, F., and Lee, S., Hot Deformation Behavior and Flow Stress Modeling of Annealed AZ61 Mg Alloys, Progress in Natural Science: Materials International, Vol. 24, No. 3, 2014, pp. 253-265.
[46]  Cui, Y., Sauzay, M., Caes, C., Bonnaillie, P., Arnal, B., Cabet, C., and et al., Modeling and Experimental Study of Long Term Creep Damage in Austenitic Stainless Steels, Engineering Failure Analysis, Vol. 58, No. 1, 2015, pp. 452-464, DOI. 10.1016/j.engfailanal.2015.08.009.
[47]  Zhang, W., Jing, H., Xu, L., Zhao, L., Han, Y., and Li, C., Numerical Investigation of Creep Crack Initiation in P92 Steel Pipes with Embedded Spherical Defects Under Internal Pressure at 650° C, Engineering Fracture Mechanics, Vol. 139, 2015, pp. 40-55, DOI.  10.1016/j.engfracmech.2015.03.043.
[48]  ASTM, 139, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials, American Society for Testing and Materials, Philadelphia, EUA, 2011.
[49]  Zhang, C., Qiao, J. C., Pelletier, J. M., and Yao, Y., Arrhenius Activation of Zr65Cu18Ni7Al10 Bulk Metallic Glass in the Supercooled Liquid Region, Intermetallics, Vol. 86, No. 1, 2017, pp. 88-93, DOI.10.1016/j.intermet.2017.03.017.
[50]  Abbasi-Bani, A., Zarei-Hanzaki, A., Pishbin, M. H., and Haghdadi, N., A Comparative Study on the Capability of Johnson–Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg–6Al–1Zn Alloy, Mechanics of Materials, Vol. 71, 2014, pp. 52-61, DOI.10.1016/j.mechmat.2013.12.001.
[51]  Liao, C. H., Wu, H. Y., Lee, S., Zhu, F. J., Liu, H. C., and Wu, C. T., Strain-Dependent Constitutive Analysis of Extruded AZ61 Mg Alloy Under Hot Compression, Materials Science and Engineering: A, Vol. 565, No. 2, 2013, pp. 1-8, DOI. 10.1016/j.msea.2012.12.025.
[52]  Wu, H. Y., Yang, J. C., Zhu, F. J., and Wu, C. T., Hot Compressive Flow Stress Modeling of Homogenized AZ61 Mg Alloy Using Strain-Dependent Constitutive Equations, Materials Science and Engineering: A, Vol. 574, 2013, pp. 17-24, DOI. 10.1016/j.msea.2013.03.005.
[53]  Zener, C., Hollomon, J. H., Effect of Strain Rate Upon Plastic Flow of Steel, Journal of Applied physics, Vol. 15, No. 1, 1944, pp. 22-32, DOI. 10.1063/1.1707363.
[54]  Najarian, F., Alipour, R., Shokri-Rad, M., Nejad, A. F., and Razavykia, A., Multi-Objective Optimization of Converting Process of Auxetic Foam Using Three Different Statistical Methods, Measurement, Vol. 119, No. 1, 2018, pp. 108-116, DOI. 10.1016/j.measurement.2018.01.064.
[55]  Mohsenizadeh, S., Alipour, R., Ahmad, Z., and Alias, A., Influence of Auxetic Foam in Quasi-Static Axial Crushing, International Journal of Materials Research, Vol. 107, No. 10, 2016, pp. 916-924, DOI. 10.3139/146.111418.
[56]  Alipour, R., Nejad, A. F., and Izman, S., The Reliability of Finite Element Analysis Results of the Low Impact Test in Predicting the Energy Absorption Performance of Thin-Walled Structures, Journal of Mechanical Science and Technology, Vol. 29, No. 5, 2015, pp. 2035-2045, DOI. 10.1007/s12206-015-0424-3.