Experimental Study on Manufacturing of Tailor Friction Stir Welded Aluminium Blanks

Document Type: Original Article


1 Department of Mechanical Engineering Isfahan University of Technology, Isfahan, Iran

2 Department of Mechanical Engineering, Islamic Azad University, Najafabad, Iran Modern Manufacturing Technologies Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran


Today, in sheet metal forming processes, a new concept of fabricating consolidated sheets or in other words Tailor Welded Blanks emerged. Friction Stir Welding is one method for manufacturing TWBs and has numerous advantages over fusion welding methods for joining aluminum sheets. In the present study, TWBs made by friction stir welding of 6061-T6 and 5754-O aluminum alloys were studied. The effects of different tool rotational speeds and welding speeds on the mechanical properties and microstructural characteristics of dissimilar joints were evaluated. The results showed that in an appropriate range of speeds combinations, an optimum rotational speed exists at which maximum strength is achieved. Regarding welding speed, greater strength is attained at higher speeds. The microstructural analysis confirms that an increase in welding speed will result in grain size reduction and consequently higher tensile strength. It is observed that above the optimum rotational speed, the grain size of the nugget zone increases which results in decreasing tensile strength. With regard to elongation, it is found that despite the grain growth of the nugget zone at a higher ratio of tool rotational speed to welding speed, the elongation improved due to the dominant material existing in the weld zone. Positioning Al 6061 on the advancing side of the dissimilar joints leads to improved mechanical properties compared with positioning on the retreating side. It is notable that the degree of such improvement in ductility is much more remarkable than strength, which is valuable regarding formability concerns.


Main Subjects

[1]    Kinsey, B., Wu, X., Tailor Welded Blanks for Advanced Manufacturing, Elsevier, 2011, pp. 164-165. 0857093851.

[2]    Matrukanitz, R., Selection and Weldability of Heat-Treatable Aluminum Alloys. ASM Handbook-Welding, Brazing and Soldering, Vol. 6, 1990, pp. 528-536.

[3]    Montazerolghaem, H., Mohammadzadeh, M., Experimental Study on Effect of Reverse Rotation on Micro-Hardness Value of High-Pressure Torsion Processed Samples, Procedia Manufacturing, Vol. 15, 2018, pp. 1509-1516. doi: 10.1016 /j.promfg.2018 .07.327.

[4]    Thomas, W., Friction Stir Butt Welding, 1991.

[5]    Montazerolghaem, H., Badrossamay, M., Tehrani, A. F., Rad, S. Z., and Esfahani, M. S., Dual-Rotation Speed Friction Stir Welding: Experimentation and Modeling, Materials and Manufacturing Processes, Vol. 30, No. 9, 2015, pp. 1109-1114. doi: 10.1080 /10426914.2014.973578.

[6]    Montazerolghaem, H., Fadaie Tehrani, A., and Badrossamay, M., An Innovative Approach for Manufacturing of Thin Welded Blanks and Coils, Materials and Manufacturing Processes, Vol. 29, No. 8, 2014, pp. 889-893. doi: 10.1080/10426914.2013 .811735.

[7]    Peel, M., Steuwer, A., Withers, P., Dickerson, T., Shi, Q., and Shercliff, H., Dissimilar Friction Stir Welds in AA5083-AA6082, Part I: Process Parameter Effects on Thermal History and Weld Properties, Metallurgical and Materials Transactions A, Vol. 37, No. 7, 2006, pp. 2183-2193. doi: 10.1007/BF02589 138.

[8]    Fu, B., Qin, G., Li, F., Meng, X., Zhang, J., and Wu, C., Friction Stir Welding Process of Dissimilar Metals of 6061-T6 Aluminum Alloy to AZ31B Magnesium Alloy, Journal of Materials Processing Technology, Vol. 218, No., 2015, pp. 38-47. doi: 10.1016/j.jmatprotec.2014.11.039.

[9]    Stol, I., Selecting Manufacturing Processes for Automotive Aluminum Space Frames, Welding Journal, Vol. 73, No. 2, 1994, pp. 57-65. doi.

[10] Burford, D., Widener, C., and Tweedy, B., Advances in Friction Stir Welding for aerospace applications, Proceedings of the 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO), Wichita, Kansas, 2006.

[11] Mishra, R. S., Ma, Z., Friction Stir Welding and Processing, Materials Science and Engineering: R: Reports, Vol. 50, No. 1, 2005, pp. 1-78. doi: 10.1007/978-3-319-07043-8.

[12] Aval, H. J., Serajzadeh, S., and Kokabi, A., Thermo-Mechanical and Microstructural Issues in Dissimilar Friction Stir welding of AA5086–AA6061, Journal of Materials Science, Vol. 46, No. 10, 2011, pp. 3258-3268. doi: 10.1007/s10853-010-5213-x.

[13] Gungor, B., Kaluc, E., Taban, E., and Sik, A., Mechanical, Fatigue and Microstructural Properties of Friction Stir Welded 5083-H111 and 6082-T651 Aluminum Alloys, Materials & Design, Vol. 56, No., 2014, pp. 84-90. doi: 10.1016/j.matdes.2013.10.090.

[14] Leitao, C., Leal, R., Rodrigues, D., Loureiro, A., and Vilaça, P., Mechanical Behaviour of Similar and Dissimilar AA5182-H111 and AA6016-T4 Thin Friction Stir Welds, Materials & Design, Vol. 30, No. 1, 2009, pp. 101-108. doi: 10.1016/j.matdes.2008.04.045.

[15] Palanivel, R., Koshy Mathews, P., Murugan, N., and Dinaharan, I., Effect of Tool Rotational Speed and Pin Profile on Microstructure and Tensile Strength of Dissimilar Friction Stir Welded AA5083-H111 and AA6351-T6 Aluminum Alloys, Materials & Design, Vol. 40, No., 2012, pp. 7-16. doi: 10.1016/j.matdes.2012.03.027.

[16] Ghaffarpour, M., Kolahgar, S., Dariani, B. M., and Dehghani, K., Evaluation of Dissimilar Welds of 5083-H12 and 6061-T6 Produced by Friction Stir Welding, Metallurgical and Materials Transactions A, Vol. 44, No. 8, 2013, pp. 3697-3707. doi: 10.1007/s11661-013-1739-2.

[17] Miles, M., Nelson, T., and Melton, D., Formability of Friction-Stir-Welded Dissimilar-Aluminum-Alloy Sheets, Metallurgical and Materials Transactions A, Vol. 36, No. 12, 2005, pp. 3335-3342. doi: 10.1007/s11661-005-0008-4.

[18] Karlsson, L., Berqvist, E. L., and Larsson, H., Application of Friction Stir Welding to Dissimilar Welding, Welding in the World, Vol. 46, No. 1-2, 2002, pp. 10-14. doi.

[19] Park, S. K., Hong, S. T., Park, J. H., Park, K. Y., Kwon, Y. J., and Son, H. J., Effect of Material Locations on Properties of Friction Stir Welding Joints of Dissimilar Aluminium Alloys, Science and Technology of Welding & Joining, Vol. 15, No. 4, 2010, pp. 331-336. doi.

[20] Alcoa, I. Nautical, Designed for Maritime Use. http://www.alcoa.com/mill_products/europe/en/pdf/Nautic_Al_EN.pdf [cited 5/6/2015].

[21] Hirsch, J., Bassan, D., Lahaye, C., and Goede, M., Aluminium in Innovative Light-Weight Car Design, Materials Transactions, Vol. 52, No. 5, 2011, pp. 818-824. doi: 10.2320/matertrans.L-MZ201132.

[22] Rao, D., Huber, K., Heerens, J., dos Santos, J., and Huber, N., Asymmetric Mechanical Properties and Tensile Behaviour Prediction of Aluminium Alloy 5083 Friction Stir Welding Joints, Materials Science and Engineering: A, Vol. 565, No., 2013, pp. 44-50. doi: 10.1016/j.msea.2012.12.014.

[23] Lee, W. B., Yeon, Y. M., and Jung, S. B., The Joint Properties of Dissimilar Formed Al Alloys by Friction Stir Welding According to the Fixed Location of Materials, Scripta Materialia, Vol. 49, No. 5, 2003, pp. 423-428. doi: 10.1016/S1359-6462(03)00301-4.

[24] Zhang, Z., Zhang, H., Numerical Studies on Controlling of Process Parameters in Friction Stir Welding, Journal of Materials Processing Technology, Vol. 209, No. 1, 2009, pp. 241-270. doi: 10.1016/j.jmatprotec.2008.01.044.

[25] Fratini, L., Buffa, G., CDRX Modelling in Friction Stir Welding of Aluminium Alloys, International Journal of Machine Tools and Manufacture, Vol. 45, No. 10, 2005, pp. 1188-1194. doi: 10.1016/j.ijmachtools.2004.12.001.

[26] Boiler, A., Code, P. V., Rules for Construction of Pressure Vessels, American Society of Mechanical Engineers: New York, 2007.

[27] Tronci, A., McKenzie, R., Leal, R., and Rodrigues, D., Microstructural and Mechanical Characterisation of 5XXX-H111 Friction Stir Welded Tailored Blanks, Science and Technology of Welding and Joining, Vol. 16, No. 5, 2011, pp. 433-439. doi: 10.1179/1362171811Y.0000000012.

[28] Sato, Y. S., Park, S. H. C., and Kokawa, H., Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metallurgical and Materials Transactions A, Vol. 32, No. 12, 2001, pp. 3033-3042. doi: 10.1007/s11661-001-0178-7.

[29] Jin, H., Saimoto, S., Ball, M., and Threadgill, P., Characterisation of Microstructure and Texture in Friction Stir Welded Joints of 5754 and 5182 Aluminium Alloy Sheets, Materials Science and Technology, Vol. 17, No. 12, 2001, pp. 1605-1614. doi: 10.1179/026708301101509674.

[30] Miles, M., Nelson, T., and Decker, B., Formability and Strength of Friction-Stir-Welded Aluminum Sheets, Metallurgical and Materials Transactions A, Vol. 35, No. 11, 2004, pp. 3461-3468. doi: 10.1007/s11661-004-0183-8.

[31] Cabibbo, M., McQueen, H., Evangelista, E., Spigarelli, S., Di Paola, M., and Falchero, A., Microstructure and Mechanical Property Studies of AA6056 Friction Stir Welded Plate, Materials Science and Engineering: A, Vol. 460, No., 2007, pp. 86-94. doi: 10.1016/j.msea.2007.01.022.

[32] Liu, G., Murr, L., Niou, C., McClure, J., and Vega, F., Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum, Scripta Materialia, Vol. 37, No. 3, 1997, pp. 355-361. doi: 10.1016/S1359-6462(97)00093-6.

[33] Feistauer, E., Bergmann, L., Barreto, L., and dos Santos, J., Mechanical Behaviour of Dissimilar Friction Stir Welded Tailor Welded Blanks in Al–Mg Alloys for Marine Applications, Materials & Design, Vol. 59, No., 2014, pp. 323-332. doi: 10.1016/j.matdes.2014.02.042.