Buckling Analysis of Orthotropic Annular Graphene Sheet with Various Boundary Conditions in an Elastic Medium

Document Type: Original Article

Authors

Department of Mechanical Engineering, Mashhad branch, Islamic Azad University, Mashhad, Iran

Abstract

In this study, axisymmetric buckling of annular orthotropic graphene sheet embedded in a Winkler–Pasternak elastic medium is scrutinized for different boundary conditions based on non-local elasticity theory. With the aid of principle of virtual work, the non-local governing equations are derived based on First-order Shear Deformation Theory (FSDT). Differential Quadrature Method (DQM) is also used to solve equilibrium equations. Edges of Nano-plate might be restrained by different combinations of free, simply supported or clamped boundary conditions. To confirm results, comparison of studies is made between results obtained and available solutions in the literature. Finally, a detailed parametric study is conducted to investigate the impact of small scale effects, surrounding elastic medium, boundary conditions and geometrical parameters on critical buckling load. The main goal of this work is to study the effect of various non-local parameters on the buckling load of annular Nano-plate for different boundary conditions, Winkler and shear foundation parameters, annularity and thickness-to-radius ratios. It is seen that for Nano-plates without an elastic foundation, the impact of thickness on buckling load does not depend on values of non-local parameter and annularity. Results also show that impact of elastic basis on the buckling load is independent of small scale effects.

Keywords


[1]     Radić, N., et al., Buckling Analysis of Double-Orthotropic Nano-plates Embedded in Pasternak Elastic Medium Using Nonlocal Elasticity Theory, Composites Part B: Engineering, Vol. 61, 2014, pp. 162-171.DOI: https://doi.org/10.1016/j.compositesb.2014.01.042.

[2]     Craighead, H. G., Nanoelectromechanical Systems. Science, Vol. 290, N. 5496, 2000, pp. 1532-1535.DOI: DOI: 10.1126/science.290.5496.1532.

[3]     Kim, H., Macosko, C. W., Processing-Property Relationships of Polycarbonate/Graphene Composites, Polymer, Vol. 50, No. 15, 2009, pp. 3797-3809.DOI: https://doi.org/10.1016/j.polymer.2009.05.038.

[4]     Sakhaee-Pour, A., Ahmadian, M. T., and Vafai, A. Applications of Single-Layered Graphene Sheets as Mass Sensors and Atomistic Dust Detectors, Solid State Communications, Vol. 145, No. 4, 2008, pp. 168-172.DOI: https://doi.org/10.1016/j.ssc.2007.10.032.

[5]     Ouyang, F. P., et al., A Biosensor Based On Graphene Nanoribbon with Nano-pores: A First-Principles Devices-Design, Chinese Physics B, Vol. 20, No. 5, 2011, pp. 058504.DOI: 10.1088/1674-1056/20/5/058504.

[6]     Frégonèse, S., et al., Electrical Compact Modelling of Graphene Transistors, Solid-State Electronics, Vol. 73, 2012, pp. 27-31.DOI: https://doi.org/10.1016/j.sse.2012.02.002.

[7]     Yang, L., Zhang, L., and Webster, T. J., Carbon Nanostructures for Orthopedic Medical Applications, Nano-medicine, Vol. 6, No. 7, 2011, pp. 1231-1244.DOI: 10.2217/nnm.11.107.

[8]     Anjomshoa, A., et al., Finite Element Buckling Analysis of Multi-Layered Graphene Sheets On Elastic Substrate Based On Nonlocal Elasticity Theory, Applied Mathematical Modelling, Vol. 38, No. 24, 2014, pp. 5934-5955.DOI: https://doi.org/10.1016/j.apm.2014.03.036.

[9]     Akgöz, B., Civalek, Ö., Buckling Analysis of Functionally Graded Microbeams Based On the Strain Gradient Theory, Acta Mechanica, Vol. 224, No. 9, 2013, pp. 2185-2201.DOI: https://doi.org/10.1007/s00707-013-0883-5.

[10]  Lam, D. C. C., et al., Experiments and Theory in Strain Gradient Elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, 2003, pp. 1477-1508.DOI: https://doi.org/10.1016/S0022-5096(03)00053-X.

[11]  Yang, F., et al., Couple Stress Based Strain Gradient Theory for Elasticity, International Journal of Solids and Structures, Vol. 39, No. 10, 2002, pp. 2731-2743.DOI: https://doi.org/10.1016/S0020-7683(02)00152-X.

[12]  Lu, P., et al., Thin Plate Theory Including Surface Effects, International Journal of Solids and Structures, Vol. 43, No. 16, 2006, pp. 4631-4647.DOI: https://doi.org/10.1016/j.ijsolstr.2005.07.036.

[13]  Eringen, A. C., On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves, Journal of Applied Physics, Vol. 54, No. 9, 1983, pp. 4703-4710.DOI: 10.1063/1.332803.

[14]  Eringen, A. C., Nonlocal Continuum Field Theories, 2002: Springer Science & Business Media.DOI: https://doi.org/10.1115/1.1553434.

[15]  Şimşek, M., Yurtcu, H. H., Analytical Solutions for Bending and Buckling of Functionally Graded Nano-beams Based On the Nonlocal Timoshenko Beam Theory, Composite Structures, Vol. 97, 2013, pp. 378-386.DOI: https://doi.org/10.1016/j.compstruct.2012.10.038.

[16]  Pradhan, S. C., Buckling of Single Layer Graphene Sheet Based On Nonlocal Elasticity and Higher Order Shear Deformation Theory, Physics Letters A, Vol. 373, No. 45, 2009, pp. 4182-4188.DOI: https://doi.org/10.1016/j.physleta.2009.09.021.

[17]  Murmu, T., Pradhan, S. C., Buckling of Biaxially Compressed Orthotropic Plates at Small Scales, Mechanics Research Communications, Vol. 36, No. 8, 2009, pp. 933-938.DOI: https://doi.org/10.1016/j.mechrescom.2009.08.006.

[18]  Pradhan, S. C., Murmu, T., Small Scale Effect On the Buckling of Single-Layered Graphene Sheets Under Biaxial Compression Via Nonlocal Continuum Mechanics, Computational Materials Science, Vol. 47, No. 1, 2009, pp. 268-274.DOI: https://doi.org/10.1016/j.commatsci.2009.08.001.

[19]  Pradhan, S. C., Murmu, T., Small Scale Effect On the Buckling Analysis of Single-Layered Graphene Sheet Embedded in an Elastic Medium Based On Nonlocal Plate Theory, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 42, No. 5, 2010, pp. 1293-1301.DOI: https://doi.org/10.1016/j.physe.2009.10.053.

[20]  Aksencer, T., Aydogdu, M., Levy Type Solution Method for Vibration and Buckling of Nano-plates Using Nonlocal Elasticity Theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 4, 2011, pp. 954-959.DOI: https://doi.org/10.1016/j.physe.2010.11.024.

[21]  Samaei, A. T., Abbasion, S., and Mirsayar, M. M., Buckling Analysis of a Single-Layer Graphene Sheet Embedded in an Elastic Medium Based On Nonlocal Mindlin Plate Theory, Mechanics Research Communications, Vol. 38, No. 7, 2011, pp. 481-485.DOI: https://doi.org/10.1016/j.mechrescom.2011.06.003.

[22]  Narendar, S., Buckling Analysis of Micro-/Nano-Scale Plates Based On Two-Variable Refined Plate Theory Incorporating Nonlocal Scale Effects, Composite Structures, Vol. 93. No. 12, 2011, pp. 3093-3103.DOI: https://doi.org/10.1016/j.compstruct.2011.06.028.

[23]  Farajpour, A., Danesh, M., and Mohammadi, M., Buckling Analysis of Variable Thickness Nanoplates Using Nonlocal Continuum Mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, 2011, pp. 719-727.DOI: https://doi.org/10.1016/j.physe.2011.11.022.

[24]  Farajpour, A., et al., Buckling of Orthotropic Micro/Nanoscale Plates Under Linearly Varying In-Plane Load Via Nonlocal Continuum Mechanics, Composite Structures, Vol. 94, No. 5, 2012, pp. 1605-1615.DOI: https://doi.org/10.1016/j.compstruct.2011.12.032.

[25]  Murmu, T., et al., Nonlocal Buckling of Double-Nanoplate-Systems Under Biaxial Compression, Composites Part B: Engineering, Vol. 44. No. 1, 2013, pp. 84-94.DOI: https://doi.org/10.1016/j.compositesb.2012.07.053.

[26]  Zenkour, A. M., Sobhy, M., Nonlocal Elasticity Theory for Thermal Buckling of Nano-plates Lying On Winkler–Pasternak Elastic Substrate Medium, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 53, 2013, pp. 251-259.DOI: https://doi.org/10.1016/j.physe.2013.04.022.

[27]  Mohammadi, M., et al., Shear Buckling of Orthotropic Rectangular Graphene Sheet Embedded in an Elastic Medium in Thermal Environment, Composites Part B: Engineering, Vol. 56, 2014, pp. 629-637.DOI: https://doi.org/10.1016/j.compositesb.2013.08.060.

[28]  Asemi, S. R., et al., Thermal Effects On the Stability of Circular Graphene Sheets Via Nonlocal Continuum Mechanics, Latin American Journal of Solids and Structures, Vol. 11, No. 4, 2014, pp. 704-724.DOI: http://dx.doi.org/10.1590/S1679-78252014000400009.

[29]  Mohammadi, M., Ghayour, M., and Farajpour, A., Free Transverse Vibration Analysis of Circular and Annular Graphene Sheets with Various Boundary Conditions Using the Nonlocal Continuum Plate Model, Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 32-42.DOI: https://doi.org/10.1016/j.compositesb.2012.09.011.

[30]  Farajpour, A., et al., Axisymmetric Buckling of the Circular Graphene Sheets with the Nonlocal Continuum Plate Model, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 43, No. 10, 2011, pp. 1820-1825.DOI: https://doi.org/10.1016/j.physe.2011.06.018.

[31]  Mohammadi, M., Ghayour, M, and Farajpour, A., Free Transverse Vibration Analysis of Circular and Annular Graphene Sheets with Various Boundary Conditions Using the Nonlocal Continuum Plate Model, Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 32-42.DOI: https://doi.org/10.1016/j.compositesb.2012.09.011.

[32]  Sobhy, M., Natural Frequency and Buckling of Orthotropic Nano-plates Resting On Two-Parameter Elastic Foundations with Various Boundary Conditions, Journal of Mechanics, Vol. 30, No. 5, 2014, pp. 443-453.DOI: DOI: https://doi.org/10.1017/jmech.2014.46.

[33]  Farajpour, A., et al., Axisymmetric Buckling of the Circular Graphene Sheets with the Nonlocal Continuum Plate Model, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 43, No. 10, 2011, pp. 1820-1825.DOI: https://doi.org/10.1016/j.physe.2011.06.018.

[34]  Ravari, M. K., Shahidi, A., Axisymmetric Buckling of the Circular Annular Nanoplates Using Finite Difference Method, Meccanica, Vol. 48, No.1, 2013, pp. 135-144.DOI: https://doi.org/10.1007/s11012-012-9589-3.

[35]  Farajpour, A., Dehghany, M., and Shahidi, A. R., Surface and Nonlocal Effects On the Axisymmetric Buckling of Circular Graphene Sheets in Thermal Environment, Composites Part B: Engineering, Vol. 50, 2013, pp. 333-343.DOI: https://doi.org/10.1016/j.compositesb.2013.02.026.

[36]  Bedroud, M., Hosseini-Hashemi, S., and Nazemnezhad, R., Buckling of Circular/Annular Mindlin Nanoplates Via Nonlocal Elasticity, Acta Mechanica, Vol. 224, No. 11, 2013, pp. 2663-2676.DOI: https://doi.org/10.1007/s00707-013-0891-5.

[37]  Mohammadi, M., et al., Influence of in-Plane Pre-Load On the Vibration Frequency of Circular Graphene Sheet Via Nonlocal Continuum Theory, Composites Part B: Engineering, Vol. 51, 2013, pp. 121-129.DOI: https://doi.org/10.1016/j.compositesb.2013.02.044.

[38]  Wang, L., Zhang, Q., Elastic Behavior of Bilayer Graphene Under In-Plane Loadings, Current Applied Physics, Vol. 12, No. 4, 2012, pp. 1173-1177.DOI: https://doi.org/10.1016/j.cap.2012.02.043.

[39]  Brush, D. O., Almroth, B. O., and Hutchinson, J., Buckling of Bars, Plates, and Shells, Journal of Applied Mechanics, Vol. 42, 1975, pp. 911.DOI: 10.1115/1.3423755

[40]  Kiani, Y., Eslami, M. R., An Exact Solution for Thermal Buckling of Annular Fgm Plates On an Elastic Medium, Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 101-110.DOI: https://doi.org/10.1016/j.compositesb.2012.09.034.

[41]  Naderi, A., Saidi, A. R., Exact Solution for Stability Analysis of Moderately Thick Functionally Graded Sector Plates On Elastic Foundation, Composite Structures, Vol. 93, No. 2, 2011, pp. 629-638.DOI: https://doi.org/10.1016/j.compstruct.2010.08.016.

[42]  Sepahi, O., Forouzan, M. R., and Malekzadeh, P., Large Deflection Analysis of Thermo-Mechanical Loaded Annular FGM Plates On Nonlinear Elastic Foundation Via DQM, Composite Structures, Vol. 92, No. 10, 2010, pp. 2369-2378.DOI: https://doi.org/10.1016/j.compstruct.2010.03.011.

[43]  Pradhan, S. C., Murmu, T., Small Scale Effect On the Buckling of Single-Layered Graphene Sheets Under Biaxial Compression Via Nonlocal Continuum Mechanics, Computational Materials Science, Vol. 47, No. 1, 2009, pp. 268-274.DOI: https://doi.org/10.1016/j.commatsci.2009.08.001.

[44]  Pradhan, S. C., Murmu, T., Small Scale Effect On the Buckling Analysis of Single-Layered Graphene Sheet Embedded in an Elastic Medium Based On Nonlocal Plate Theory, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 42, No., 5, 2010, pp. 1293-1301.DOI: https://doi.org/10.1016/j.physe.2009.10.053.

[45]  Pradhan, S. C., Kumar, A., Vibration Analysis of Orthotropic Graphene Sheets Using Nonlocal Elasticity Theory and Differential Quadrature Method, Composite Structures, Vol. 93, No. 2, 2011, pp. 774-779.DOI: https://doi.org/10.1016/j.compstruct.2010.08.004.

[46]  Malekzadeh, P., Setoodeh, A. R., and Alibeygi Beni, A., Small Scale Effect On the Thermal Buckling of Orthotropic Arbitrary Straight-Sided Quadrilateral Nanoplates Embedded in an Elastic Medium, Composite Structures, Vol. 93, No. 8, 2011, pp. 2083-2089.DOI: https://doi.org/10.1016/j.compstruct.2011.02.013.

[47]  Shu, C., Differential Quadrature and Its Application in Engineering, 2012: Springer London.

[48]  Mirfakhraei, P., Redekop, D., Buckling of Circular Cylindrical Shells by the Differential Quadrature Method, International Journal of Pressure Vessels and Piping, Vol. 75, No. 4, 1998, pp. 347-353.DOI: https://doi.org/10.1016/S0308-0161(98)00032-5.

[49]  Hosseini-Hashemi, S., et al., Differential Quadrature Analysis of Functionally Graded Circular and Annular Sector Plates On Elastic Foundation, Materials & Design, Vol. 31, No. 4, 2010, pp. 1871-1880.DOI: https://doi.org/10.1016/j.matdes.2009.10.060.

[50]  Wang, Q., Wang, C. M., The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modelling Carbon Nanotubes. Nanotechnology, Vol. 18, No. 7, 2007, pp. 075702.DOI: 10.1088/0957-4484/18/7/075702.