Velocity Control of Nonlinear Unmanned Rotorcraft using Polytopic Modelling and State Feedback Control

Document Type: Original Article


1 Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 Faculty of Electrical Engineering, Shahed University, Tehran, Iran


Performance and improvement of flight efficiency at various velocities for flight systems, in particular, rotorcrafts, with specific complexities in motion and its nonlinear equations are always of particular interest to researchers in the aerial and control domains. In this research, a new control algorithm is addressed based on the complete nonlinear Unmanned Rotorcraft (UR) model and its four main inputs. Exploiting state feedback and Polytopic Linear Parameter Varying (PLPV) modeling and using Linear Matrix Inequality (LMI), the velocity control problem is investigated. The trim points of the system are produced under different velocity control conditions. State feedback control gain matrix which plays a main role in producing the ultimate control signal, is computed by solving a set of LMIs under various conditions. Finally, instead of using a Nonlinear model, a Polytopic model is used for controller synthesis. With this goal, different scenarios for the proposed flight velocity control (in different dynamic ranges, minimum velocity to maximum velocity) are implemented. The simulation results demonstrate a very good performance of the proposed controller in the basis of PLPV modelling. It can be concluded that the proposed  manner is useful to overcome the disruptions imposed on the flight system due to the changes in the equilibrium points and the uncertainties of the parameters and/or possible errors due to the unwanted possibilities in the system.


[1]     Avila Vilchis, J. C., Brogliato, B., Dzul, A., and Lozano, R., Nonlinear Modelling And Control of Helicopters, Automatica, Vol. 39, No. 9, 2003, pp. 1583–1596, DOI :10.1016/S0005-1098(03)00168-7.

[2]     Gadewadikar, J., Lewis, F. L., Subbarao, K., and. Chen, B. M., Structured H∞ Command and Control-Loop Design for Unmanned Helicopters, J. Guid. Control. Dyn., Vol. 31, No. 4, 2008, pp. 1093–1102, DOI: 10.2514/1.31377.

[3]     Tijani, I. B., Akmeliawati, R., Legowo, A., Budiyono, A., and Muthalif, A. G. A., H∞ Robust Controller for Autonomous Helicopter Hovering Control, Aircr. Eng. Aerosp. Technol., Vol. 83, No. 6, 2011, pp. 363–374, DOI: 10.1108/00022661111173243.

[4]     Hongwei, Z., Xuehua, Z., and Bao, Z., System Dynamics Approach to Urban Water Demand Forecasting, Trans. Tianjin Univ., Vol. 15, No. 1, 2009, pp. 70–74, DOI: 10.1007/s12209-009-0014-5.

[5]     Khizer, A. N., Yaping, D., Amjad Ali, S., and Xiangyang, X., Stable Hovering Flight for a Small Unmanned Helicopter Using Fuzzy Control, Math. Probl. Eng., Vol. 2014, Article ID 208253, 17 page, 2014, .DOI: 10.1155/2014/208253.

[6]     Li, R., Chen, M., Wu, Q., and Liu, J., Robust Adaptive Tracking Control for Unmanned Helicopter with Constraints, Int. J. Adv. Robot. Syst., Vol. 14, No. 3, 2017, pp. 1–12,DOI: 10.1177/1729881417712621.

[7]     Razzaghian, A., Robust Nonlinear Control Based on Disturbance Observer for a Small-Scale Unmanned Helicopter,  J. Nonlinear Anal. Appl., Vol. 2017, No. 2, 2017, pp. 122–131, DOI: 10.5899/2017/jnaa-00390.

[8]     Ma, R., Ding, L., and Wu. H., Dynamic Decoupling Control Optimization for a Small-Scale Unmanned Helicopter, J. Robot., Vol. 2018, Article ID 9897684, 12 pages, 2018, DOI: 10.1155/2018/9897684.

[9]     Horn, J. F., Non-linear Dynamic Inversion Control Design for Rotorcraft, Aerospace, Vol. 6, No. 3, 2019, pages 38, DOI: 10.3390/aerospace6030038.

[10]  Kun, D. W., Hwang, I., Linear Matrix Inequality-Based Nonlinear Adaptive Robust Control of Quadrotor, J. Guid. Control. Dyn., Vol. 39, No. 5, 2016, pp. 996–1008,DOI: 10.2514/1.G001439.

[11]  Patterson, B. W., A Linear Parameter Varying Control Methodology for Reduction of Helicopter Higher Harmonic, Master of Science in Aeronautics and Astronautics, Massachusetts Institute of Technology, 2016.

[12]  Mohammed, R. H., Comparative Study and Robustness Analysis of Quadrotor Control in Presence of Wind Disturbances, Vol. 12, No. 2, 2019, pp. 27–37.

[13]  Lin, Z., Gain Scheduling of Aircraft Pitch Attitude and Control of Discrete, Affine, Linear Parametrically Varying Systems, Ph.D. Dissertation, Iowa State University, 2002.

[14]  Jafar, A., Bhatti, A. I., Ahmad, S. M., and Ahmed, N. Robust Gain-Scheduled Linear Parameter-Varying Control Algorithm for a Lab Helicopter: A Linear Matrix Inequality–Based Approach, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., Vol. 232, No. 5, 2018, pp. 558–571,DOI: 10.1177/0959651818759861.

[15]  Da Ponte Caun, R., Assunção, E., Minhoto Teixeira, M. C., and Da Ponte Caun, A., LQR-LMI Control Applied to Convex-Bounded Domains, Cogent Eng., Vol. 5, No. 1, 2018, pp. 1–27,DOI: 10.1080/23311916.2018.1457206.

[16]  Kasnakoǧlu, C., Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design, PLoS One, Vol. 11, No, 2016, pp. 1–36,DOI: 10.1371/journal.pone.0165017.

[17]  Raptis, I. A., Linear and Nonlinear Control of Unmanned Rotorcraft, Ph.D. Dissertation, University of South Florida, 2010.

[18]  Ren, B., Ge, S. S., Chen, C. C., Fua, H., and Lee, T. H., Modeling, Control and Coordination of Helicopter Systems, 1rd ed, Springer New York Dordrecht Heidelberg London, ISBN: 9781461415633, 2012.

[19]  Cai, G., Chen, B. M., and Lee, T. H., Unmanned Rotorcraft Systems,Springer London Dordrecht Heidelberg New York British, ISBN 978-0-85729-635-1, 2011.

[20]  Zhou, B., Lu, X., Tang, S., and Zheng, Z., Nonlinear System Identification and Trajectory Tracking Control for a Flybarless Unmanned Helicopter: Theory and Experiment, Nonlinear Dyn., Vol. 96, No, 5, 2019, DOI: 10.1007/s11071-019-04923-9.

[21]  Liu, C., Advanced Control for Miniature Helicopters: Modelling, Design and Fight Test, Ph.D. Dissertation, Department of Aeronautical and Automotive Engineering Loughborough University, 2011.

[22]  Johnson, W., Rotorcraft Aeromechanics, 1rd ed, Cambridge University Press, ISBN: 978-1107606913, 2006.

[23]  Mettler, B., Identification Modeling and Characteristics of Miniature Rotorcraft, Springer US, 2003, ISBN 978-1-4757-3785-1 .

[24]  Shamma, J. S., Analysis and Design of Gain Scheduled Control Systems, Ph.D. Dissertation, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1988.

[25]  Petres, Z., Polytopic Decomposition of Linear Parameter-Varying Models by Tensor-Product Model Transformation, Ph.D. Dissertation, Budapest University of Technology, 2006.

[26]  Souley, A. H., Boutat-Baddas, L., Becis-Aubry, Y., and Darouach. M., H-Infinity Control of a Scara Robot Using Polytopic LPV Approach,14th Mediterranean Conference on Controland Automation, DOI:10.1109/MED.2006.328836:, 2006.

[27]  Kazemi, M. H., Abolhasani, J., Uncertain LPV Modeling of Power Systems using PCA-Based Parameter Set Mapping for Robust PSS Designing, TABRIZ J. Electr. Eng., Vol. 48, No. 2, pp. 455–466, 2018.

[28]  Duan, G. R., Yu, H. H., LMIs in Control Systems: Analysis, Design and Applications, 1rd ed, CRC press, ISBN: 978-1466582996, 2012.