Investigation of the AFM Indenter’s Geometry Effect On Micro/Nano Biological Cells’ Indentation

Document Type : Original Article


1 Department of Mechanical Engineering, Iran University of Science and Technology

2 Department of Mechanical Engineering, Irann University of Science and Technology


The elasticity modules of the micro/Nanoparticles, especially biological particles are measured using different tools such as atomic force microscopy. The tip of the atomic force microscopy as an indenter has different shapes such as spherical, conical and pyramidal. In the contact of these tips and biological cells, avoiding the cell damage is a necessity. The goal of this paper is investigation and comparison of different tips’ geometries. Different tip’s geometries and their related theories were collected and proposed. To generalize theories’ application for any kind of particle (even non-biological particles) some of simplifying assumptions used in these theories, such as tip rigidity, were removed. Simulation of the force- indentation depth was done for gold nanoparticle and observed that if simplifying assumptions were not removed there would be big errors in calculating the elasticity module of some particles. Then, simulations were done for two yeast and mouse embryo cells. For both cells, in general, the geometry of the curve group, the geometry of the pyramidal group and finally the geometry of the conical group were positioned from the highest to the lowest places. For hyperbolic, conical and pyramidal tips, the important parameter was semi vertical angel. To observe its effect, different magnitudes of this parameter were simulated. According to observed results in three investigated geometries and for both cells, bigger semi vertical angel created higher curves and this means in bigger angels the possibility of cell damage is higher.


[1]     Discher, D., Dong, C., Fredberg, J. J., Guilak, F., Ingber, D., Janmey, P., Kamm, R. D., Schmid-Schönbein, G. W., and Weinbaum, S., Cell Research and Applications for the Next Decade, Annals of Biomedical Engineering, Vol. 37, No. 5, 2009, pp. 847-859, DOI: 10.1007/s10439-009-9661-x.
[2]     Alonso, J. L., Goldmann, W. H., Feeling The Forces, Atomic Force Microscopy in Cell Biology, Life Sciences, Vol. 72, No. 23, 2003 pp. 2553-2560, DOI: 10.1016/S0024-3205(03)00165-6.
[3]     Lin, D. C., Dimitridas, E. K., and Horkay, F., Robust Strategies for Automated AFM Force Curve Analysis-I. Non-Adhesive Indentation of Soft, Inhomogeneous Materials, ASME, Vol. 129, No. 3, 2007, pp. 430-440, DOI: 10.1115/1.2720924.
[4]     Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A., and Zhdanov, R. I., Atomic Force Microscopy Probing of Cell Elasticity, Micron, Vol. 38, No. 8, 2007, pp. 824-33, DOI: 10.1016/j.micron.2007.06.011.
[5]     Rico, F., Roca-Cusachs, P., Gavara, N., Farré, R., Rotger, M., and Navajas, D., Probing Mechanical Properties of Living Cells by Atomic Force Microscopy with Blunted Pyramidal Cantilever Tips, Physical Review, Vol. 72, No. 2, 2005, pp. e021914, DOI: 10.1103/PhysRevE.72.021914.
[6]     Rosenbluth, M. J., Lam, W. A., and Fletcher, D. A., Force Microscopy of Nonadherent Cells: A Comparison of Leukemia Cell Deformability, Biophysical, Vol. 90, No. 8, 2006, pp. 2994-3003, DOI: 10.1529/biophysj.105.067496.
[7]     Krieg, M., Arboleda-Estudillo, Y., Puech, P. H., Käfer, J., Graner, F., Müller, D. J., and Heisenberg, C. P., Tensile Forces Govern Germ-Layer Organization in Zebra Fish, Nature Cell Biology, Vol. 10, 2008, pp. 429-436, DOI: 10.1038/ncb1705.
[8]     Park, S., Yong, J. L., Nano-Mechanical Compliance of Müller Cells Investigated by Atomic Force Microscopy, International Journal of Biological Sciences, Vol. 9 No .7, 2013, pp. 702-708, DOI: 10.7150/ijbs.6473.
[9]     Wenger, M. P. E., Bozec, L., Horton, M. A., and Mesquida, P., Mechanical Properties of Collagen Fibrils, Biophysical Journal, Vol. 93, No. 4, 2007, pp.1255-1263, DOI: 10.1529/biophysj.106.103192.
[10]  Touhami, A., Nysten, B., and Dufrêne, Y. F., Nanoscale Mapping of the Elasticity of Microbial Cells by Atomic Force Microscopy, Langmuir, Vol. 19, NO. 11, 2003, pp. 4539-4543, DOI: 10.1021/la034136x.
[11]  Bilodeau, G. G., Regular Pyramid Punch Problem, ASME Journal of Applied Mechanics, Vol. 59, No. 3, 1992, pp. 519-523, DOI: 10.1115/1.2893754.
[12]  Briscoet, B. J, Sebastian, K. S., and Adams, M. J., The Effect of Indenter Geometry On the Elastic Response to Indentation, Journal of Physics D: Applied Physics, Vol. 27, No. 6, 1994, pp. 11561162, DOI: 10.1088/0022-3727/27/6/013.
[13]  Akhremitchev, B. B., Walker, G. C., Finite Sample Thickness Effects on Elasticity Determination Using Atomic Force Microscopy, Langmuir, Vol. 15, No. 17, 1999, pp. 5630-5634, DOI: 10.1021/la980585z.
[14]  Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B., and Chadwick, R. S., Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope, Biophysical Journal, Vol. 82, No. 5, 2002, pp. 2798–2810, DOI: 10.1016/S0006-3495(02)75620-8.
[15]  Gavara, N., Chadwick, R. S., Determination of the Elastic Moduli of Thin Samples and Adherent Cells Using Conical AFM Tips, Nature Nanotechnology, Vol. 7, No. 11, 2012, pp. 733–736, DOI: 10.1038/nnano.2012.163.
[16]  Rico, F., Roca-Cusachs, P., Gavara, N., Farré, R., Rotger, M., and Navajas, D., Probing Mechanical Properties of Living Cells by Atomic Force Microscopy with Blunted Pyramidal Cantilever Tips, Physical Review E, Vol. 72, 2005, pp. 021914, DOI: 10.1103/PhysRevE.72.021914.
[17]  Park, S., Koch, D., Cardenas, R., Kas, J., and Shih, C. K., Cell Motility and Local Viscoelasticity of Fibroblasts, Biophysics Journal, Vol. 89, No. 6, 2005, pp. 4330-42, DOI: 10.1529/biophysj.104.053462.
[18]  JPK Instruments, Determining the Elastic Modulus of Biological Samples Using Atomic Force Microscopy, JPK application Note,, 2014.
[19]  Wagih, A., Maimí, P., Blanco, N., and Trias, D., Predictive Model for The Spherical Indentation of Composite Laminates with Finite Thickness, Composite Structures, Vol. 153, 2016, pp. 468–477, DOI: 10.1016/j.compstruct.2016.06.056.
[20]  Turner, J. R., Contact on a Transversely Isotropic Half-Space or Between Two Transversely Isotropic Bodies, International Journal of Solids and Structures, Vol. 16, No. 5, 1980, pp. 409–19, DOI: 10.1016/0020-7683(80)90039-6.
[21]  Hertz, H., Über Die Berührung Fester Elastischer Körper, Journal für Die Reine und Angewandte Mathematik, Vol. 92, 1882, pp. 156-171, DOI: 10.1515/crll.1882.92.156.
[22]  Harding, J. W., Sneddon, I. N., The Elastic Stresses Produced by The Indentation of the Plane Surface of a Semi-Infinite Elastic Solid by A Rigid Punch, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 41, No. 1, 1945, pp. 16-26, DOI: 10.1017/S0305004100022325.
[23]  Reifenberger, R., Fundamentals of Atomic Force Microscopy Part I: Foundations, World Scientific Publishing Co, London, GB, 2016, pp. 141-146, ISBN: 978-9814630344.
[24]  Wagih A., Fathy A., Experimental Investigation and Fe Simulation of Nanoindentation on Al-Al2O3 Nanocomposites, Advanced Powder Technology, Vol. 27, No. 2, 2016, 403–410, DOI: 10.1016/j.apt.2016.01.021.