Attitude Tracking Control of Autonomous Helicopter using Polytopic-LPV Modeling and PCA-Parameter Set Mapping

Document Type : Original Article


1 Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 Faculty of Electrical Engineering, Shahed University, Tehran, Iran


This paper presents a new method for modeling and Attitude Control of Autonomous Helicopters (A.H.) based on a polytopic linear parameter varying approach using parameter set mapping with the Principal Component Analysis (PCA). The polytopic LPV model is extracted based on angular velocities and Euler angles, that is influenced by flopping angles, by generating a set of data over the different trim points. Because of the high volume of trim data, parameter set mapping based on (PCA) is used to reduce the parameter set dimension. State feedback control law is proposed to stabilize the system by introducing a Linear Matrix Inequality (LMI) set over the vertices models. The proposed controller is performed for an Autonomous Helicopter in different scenarios. All the scenarios are investigated with the PCA algorithm as a technique for reducing the computational volume and increasing the speed of solving the LMI set. The simulation results of implementing the planned controller on the nonlinear model of an autonomous helicopter in different scenarios show the effectiveness of the proposed scheme.


[1]     Chen, M., Ge, S. S., and Ren, B., Robust Attitude Control of Helicopters with Actuator Dynamics Using Neural Networks, IET Control Theory Appl., Vol. 4, No. 12, 2010 pp. 2837–2854.
[2]     Jeong, D. Y., Kang, T., Dharmayanda, H. R., and Budiyono, A., H -Infinity Attitude Control System Design for a Small-Scale Autonomous Helicopter with Nonlinear Dynamics and Uncertainties, J. Aerosp. Eng., Vol. 25, No. 4, 2012, pp. 501–518.
[3]     Kadmiry, B., Driankov, D., A Fuzzy Gain-Scheduler for the Attitude Control of an Unmanned Helicopter, IEEE Trans, Fuzzy Syst., Vol. 12, No. 4, 2004, pp. 502–515.
[4]     Al-Shehabi, A. G., Fuzzy Logic Attitude Control System for a Mini Helicopter Expanded Non Linear Mathematical Model, Jour. Aerosp. Sci. Technol., Vol. 2, No. 1, 2016, pp. 19–33.
[5]     Ohnishi ,Y., Mori ,S., An Attitude Control of a Helicopter by Adaptive PID Controller, International Conference on Advanced Mechatronic Systems, ICAMechS, No. 3, 2013, pp. 565–570.
[6]     Zhang, X., Chen, X. , Liu, P., and Wang, J., Adaptive Attitude Controller Design for Unmanned Helicopter, IEEE International Conference on Unmanned Systems (ICUS), 2017.
[7]     Bidikli, B., Robust Attitude Tracking Control for a Small – Scaled Unmanned Model Helicopter, 2015.
[8]     Li, Z., Liu, H. H. T., Zhu, B., Gao, H., and Kaynak, O., Nonlinear Robust Attitude Tracking Control of a Table-Mount Experimental Helicopter using Output Feedback, IEEE Trans. Ind. Electron., Vol. 62, No. 9, 2015, pp. 5665–5676.
[9]     Sheng, S., Sun,, C., An Adaptive Attitude Tracking Control Approach for an Unmanned Helicopter with Parametric Uncertainties and Measurement Noises, Int. J. Control, Autom. Syst., Vol. 14, No. 1, 2016, pp. 217–228.
[10]  Li, C., Yang, X., and Xiao, B., Adaptive Attitude Tracking Control of a 3-Degrees-of-Freedom Experimental Helicopter with Actuator Dead-Zone, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., Vol. 233, No. 1,2019, pp. 91–99.
[11]  Raj, N., Banavar, Abhishek, R. N., and Kothari, M., Attitude Tracking Control for Aerobatic Helicopters: a Geometric Approach, 2017 IEEE 56th Annu. Conf. Decis. Control. CDC 2017, 2018, pp. 1951–1956.
[12]  Tarighi, R., Mazinan, A. H., and Kazemi, M. H., Trajectory Tracking of Nonlinear Unmanned Rotorcraft Based on Polytopic Modeling and State Feedback Control, IETE J. Res., Vol. 13, No. 3, 2020.
[13]  Tarighi, R., Mazinan, A. H., and Kazemi, M. H., Velocity Control of Nonlinear Unmanned Rotorcraft using Polytopic Modelling and State Feedback Control, ADMT J., Vol. 13, 2020, pp. 33–49.
[14]  Kadmiry, B., Driankov, D., A Fuzzy Gain-Scheduler for the Attitude Control of an Unmanned Helicopter, IEEE Trans. Fuzzy Syst., Vol. 12, No. 4, 2004, pp. 502–515.
[15]  Soltanpour, M. R., Hasanvand, F., Robust Linear Parameter Varying Attitude Control of a Quadrotor Unmanned Aerial Vehicle with State Constraints and Input Saturation Subject to Wind Disturbance, Trans. Inst. Meas. Control, Vol. 42, No. 6, 2019, pp. 1083-10962019.
[16]  Jafar, A., Bhatti, A. I., Ahmad, S. M., and Ahmed, N., Robust Gain-Scheduled Linear Parameter-Varying Control Algorithm for a Lab Helicopter: A Linear Matrix Inequality–Based Approach, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., Vol. 232, No. 5, 2018, pp. 558–571.
[17]  Hasseni, S. E. I., Abdou, L., Robust LPV Control for Attitude Stabilization of a Quadrotor Helicopter Under Input Saturations, Adv. Technol. Innov., Vol. 5, No. 2, 2020, pp. 98–111.
[18]  Khalesi, M. H., Salarieh, H., and Saadat Foumani, M., System Identification and Robust Attitude Control of an Unmanned Helicopter using Novel Low-Cost Flight Control System, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., Vol. 234, No. 5, 2020, pp. 634–645.
[19]  Johnson, W., Rotorcraft Aeromechanics, Vol. 9781107028, Cambridge, 2006.
[20]  Guowei, C., Ben, C. M., and Lee, T. H., Unmanned Rotorcraft Systems. Springer London Dordrecht Heidelberg New York British, 2011.
[21]  Ren, B., Ge, S. S., Chen, C., Fua, C. H., and Lee, T. H., Modeling, Control and Coordination of Helicopter Systems. New York, NY: Springer New York Dordrecht Heidelberg London, 2012.
[22]  Bramwell, A. R. S., Done, G., and Balmford, D., Bramwell’s Helicopter Dynamics. Butterworth-Heinemann, 2001.
[23]  Batrakov, A., Kusyumov, A., Kusyumov, S., Mikhailov, S., and Barakos, G. N., Simulation of Tail Boom Vibrations using Main Rotor-Fuselage Computational Fluid Dynamics (CFD), Appl. Sci., Vol. 7, No. 9, 2017.
[24]  Liu, C., Chen, W., and Andrews, J., Explicit Non-Linear Model Predictive Control for Autonomous Helicopters, J. Aerosp. Eng., 2011.
[25]  Lu, H., Liu, C., Guo, L., and Chen, W. H., Flight Control Design for Small-Scale Helicopter using Disturbance- Observer-Based Backstepping, J. Guid. Control. Dyn., Vol. 38, No. 11, 2015, pp. 2235–2240.
[26]  Chicunque, C. P. M., Robust and Linear Parameter-Varying Control of Aeroservoelastic Systems, University of Minnesota, 2015.
[27]  Bruzelius, F., Linear Parameter-Varying Systems an approach to gain scheduling, Chalmers University of Technology Goteborg, Sweden, 2004.
[28]  Hoffmann, C., Werner, H., A Survey of Linear Parameter-Varying Control Applications Validated by Experiments or High-Fidelity Simulations, IEEE Trans. Control Syst, Technol., Vol. 23, No. 2, 2015, pp. 416–433.
[29]  Kajiwara, LPV Techniques for Control of an Invered Pendulum, IEEE Control Syst.1999, pp. 44–54.
[30]  Briat, C., Linear Parameter-Varying and Time-Delay Systems:Analysis, Observation, Filtering and Control, Springer Heidelberg New York Dordrecht London, Vol. 3, 2015.
[31]  Briat, C., Robust Control and Observation of LPV Time-Delay Systems Corentin Briat To cite this version, GIPSA-lab, 2009.
[32]  Briat, C., Robust Control and Observation of LPV Time-Delay Systems, Institut National Polytechnique de Grenoble - INPG, 2009.
[33]  Kwiatkowski, A., Werner, H., PCA-Based Parameter Set Mappings for LPV Models with Fewer Parameters and Less Overbounding, IEEE Trans. Control Syst. Technol., Vol. 16, No. 4, 2008, pp. 781–788.
[34]  Brunton, S. L., Kutz, J. N., Singular Value Decomposition (SVD), in Data-Driven Science and Engineering, Cambridge university press, 2019, pp. 3–46.
[35]  Tijani, I. B., Akmeliawati, R., Legowo, A., Budiyono, A., and Muthalif, A. G. A., H∞ robust Controller for Autonomous Helicopter Hovering Control, Aircr. Eng. Aerosp. Technol., Nol. 83, No. 6, pp. 2011, 363–374.