Document Type : Original Article


Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran



In this research, the effect of CaCO3 nanoparticles was experimentally investigated on vibrational damping behavior and static mechanical properties of polypropylene (PP). Hammer tests along with modal analysis were carried out to evaluate the forced vibration behavior of composite plates under  one edge clamped support conditions while tensile tests were performed to assess the static mechanical properties. A comparison of the results showed an increment in the static mechanical properties of nanocomposites by increasing the nanoparticles content in the PP matrix. Composite with 10 wt.% nanoparticles showed the highest rise in Young’s modulus (39.71 %) compared to pure PP. An increment in Young’s modulus and stiffness led to an increasing trend in the damped natural frequencies of the nanocomposites so that the composite with 10 wt. % nanoparticles showed the highest damped natural frequency augmentation (23.6 %, 36.78 %, and 252.62 %) compared to pure PP in the first three modes. In addition, an enhancement in the nanoparticles content of the PP matrix led to an increasing trend in damping ratios of the nanocomposites such that the composite with 10 wt. % nanoparticles in the first mode (28.99 %) and composite with 7.5 wt. % nanoparticles in the second and third modes (418.66 % and 9.93 %) showed the highest rise in damping ratio compared to pure PP. Increasing damping ratios can be due to the proper dispersion of nanoparticles in the matrix and consequently energy dissipation of the stick-slip mechanism between the matrix and nanoparticles. Moreover, high nanoparticle contents had destructive effects on both the static and dynamic behavior of the composites.


  • Bakhtiari, A., Ghasemi, F. A., Naderi, G., and Nakhaei, M. R., An Approach to the Optimization of Mechanical Properties of Polypropylene/Nitrile Butadiene Rubber/Halloysite Nanotube/Polypropylene-g-Maleic Anhydride Nanocomposites Using Response Surface Methodology, Polymer Composites, Vol. 41, No. 6, 2020, pp. 1–14, DOI: 10.1002/pc.25541.
  • Eiras, D., Pessan, L. A., Mechanical Properties of Polypropylene/Calcium Carbonate Nanocomposites, Materials Research, Vol. 12, No. 4, 2009, pp. 517–522, DOI: 10.1590/S1516-14392009000400023.
  • Ke, F., Jiang, X., Xu, H., Ji, J., and Su, Y., Ternary Nano-CaCO3/Poly (Ethylene Terephthalate) Fiber/Polypropylene Composites: Increased Impact Strength and Reinforcing Mechanism, Composites Science and Technology, Vol. 72, No. 5, 2012, pp. 574–579, DOI: 10.1016/j.compscitech.2012.01.001.
  • Kiran, M. D., Govindaraju, H. K., Jayaraju T., and Kumar, N., Effect of Fillers on Mechanical Properties of Polymer Matrix Composites, Materials Today: Proceedings, Vol. 5, No 10, 2018, pp. 22421–22424, DOI: 10.1016/j.matpr.2018.06.611.
  • Yetgin, S. H., Effect of Multi Walled Carbon Nanotube on Mechanical, Thermal and Rheological Properties of Polypropylene, Journal of Materials Research and Technology, Vol. 8, No. 5, 2019, pp. 4725–4735, DOI: 10.1016/j.jmrt.2019.08.018.
  • Nascimento, E. M., Eiras, D., and Pessan, L. A., Effect of Thermal Treatment on Impact Resistance and Mechanical Properties of Polypropylene/Calcium Carbonate Nanocomposites, Composites Part B, Vol. 91, 2016, pp. 228–234, DOI: 10.1016/j.compositesb.2015.12.040.
  • Lapcik, L., Manas, D., Vasina, M., Lapcikova, B., Reznicek, M., and Zadrapa, P., High Density Poly (Ethylene)/CaCO3 Hollow Spheres Composites for Technical Applications, Composites Part B, Vol. 113, 2017, pp. 218–224, DOI: 10.1016/j.compositesb.2017.01.025.
  • Palanikumar, K., AshokGandhi, R., Raghunath, B. K., and Jayaseelan, V., Role of Calcium Carbonate (CaCO3) in Improving Wear Resistance of Polypropylene (PP) Components Used in Automobiles, Materials Today: Proceedings, Vol. 16, No. 2, 2019, pp. 1363–1371, DOI: 10.1016/j.matpr.2019.05.237.
  • Lam, T. D., Hoang, T. V., Quang, D. T., and Kim, J. S., Effect of Nanosized and Surface-Modified Precipitated Calcium Carbonate on Properties of CaCO3/Polypropylene Nanocomposites, Materials Science and Engineering A, Vol. 501, No. 1, 2009, pp. 87–93, DOI: 10.1016/j.msea.2008.09.060.
  • Ghari, H. S., Jalali-Arani, A., Nanocomposites Based on Natural Rubber, Organoclay and Nano-Calcium Carbonate: Study on the Structure, Cure Behavior, Static and Dynamic-Mechanical Properties, Applied Clay Science, Vol. 119, No. 2, 2016, pp. 348–357, DOI: 10.1016/j.clay.2015.11.001.
  • Rajeshkumar, G., Hariharan, V., Free Vibration Characteristics of Phoenix Sp Fiber Reinforced Polymer Matrix Composite Beams, Procedia Engineering, Vol. 97, 2014, pp. 687–693. DOI: 10.1016/j.proeng.2014.12.298.
  • Cakir, F., Uysal, H., and Acar, V., Experimental Modal Analysis of Masonry Arches Strengthened with Graphene Nanoplatelets Reinforced Prepreg Composites, Measurement, Vol. 90, 2016, pp. 233–241, DOI: 10.1016/j.measurement.2016.04.061.
  • Mansour, G., Tsongas, K., and Tzetzis, D., Investigation of the Dynamic Mechanical Properties of Epoxy Resins Modified with Elastomers, Composites Part B, Vol. 94, 2016, pp. 152–159, DOI: 10.1016/j.compositesb.2016.03.024.
  • Treviso, A., Genechten, B. V., Mundo, D., and Tournour, M., Damping in Composite Materials: Properties and Models, Composites Part B, Vol. 78, 2015, pp. 144–152, DOI: 10.1016/j.compositesb.2015.03.081.
  • Prasob, P. A., Sasikumar, M., Static and Dynamic Behavior of Jute/Epoxy Composites with ZnO and TiO2 Fillers at Different Temperature Conditions, Polymer Testing, Vol. 69, 2018, pp. 52–62, DOI: 10.1016/j.polymertesting.2018.04.040.
  • Menbari, S., Ghasemi, F. A., and Ghasemi, I., Simultaneous Improvement in the Strength and Toughness of Polypropylene by Incorporating Hybrid Graphene/CaCO3 Reinforcement, Polymer Testing, Vol. 54, 2016, pp. 281–287, DOI: 10.1016/j.polymertesting.2016.07.026.
  • Lin, Y., Chen, H., Chan, C. M., and Wu, J., Effects of Coating Amount and Particle Concentration on the Impact Toughness of Polypropylene/CaCO3 Nanocomposites, European Polymer Journal, Vol. 47, No. 3, 2011, pp. 294–304, DOI: 10.1016/j.eurpolymj.2010.12.004.
  • Chandradass, J., Kumar, M. R., and Velmurugan, R., Effect of Nanoclay Addition on Vibration Properties of Glass Fibre Reinforced Vinyl Ester Composites, Materials Letters, Vol. 61, No. 22, 2007, pp. 4385–4388, DOI: 10.1016/j.matlet.2007.02.009.
  • Rafiee, M., Nitzsche, F., and Labrosse, M. R., Fabrication and Experimental Evaluation of Vibration and Damping in Multiscale Graphene/Fiberglass/Epoxy Composites, Journal of Composite Materials, Vol. 53, No. 15, 2019, pp. 2105–2118, DOI: 10.1177/0021998318822708.
  • Arumugaprabu, V., Uthayakumar, M., Manikandan, V., Rajini, N., and Jeyaraj, P., Influence of Redmud on the Mechanical, Damping and Chemical Resistance Properties of Banana/Polyester Hybrid Composites, Materials & Design, Vol. 64, 2014, pp. 270–279, DOI: 10.1016/j.matdes.2014.07.020.
  • Mansour, G., Tsongas, K., and Tzetzis, D., Modal Testing of Nanocomposite Materials Through an Optimization Algorithm, Measurement, Vol. 91, 2016, pp. 31–38, DOI: 10.1016/j.measurement.2016.05.032.
  • Eiras, D., Pessan, L. A., Influence of Calcium Carbonate Nanoparticles on the Crystallization of Olypropylene, Materials Research, Vol. 12, No. 4, 2009, pp. 523–527, DOI: 10.1590/S1516-14392009000400024.
  • Vibratory Behaviour of Glass Fibre Reinforced Polymer (GFRP) Interleaved with Nylon Nanofibers, Composite Structures, Vol. 176, 2017, pp. 923–932, DOI: 10.1016/j.compstruct.2017.06.018.
  • Mohan, T. P., Velmurugan, R., and Kanny, K., Damping Characteristics of Nanoclay Filled Hybrid Laminates During Medium Velocity Impact, Composites Part B, Vol. 82, 2015, pp. 178–189, DOI: 10.1016/j.compositesb.2015.08.016.
  • Balaganesan, G., Velmurugan, R., Vibration and Energy Dissipation of Nanocomposite Laminates for Below Ballistic Impact Loading, Latin American Journal of Solids and Structures, Vol. 12, No. 12, 2015, pp. 2259–2280, DOI: 10.1590/1679-78251703.
  • Pei, X., Chen, L., Li, J., Tang, Y., and Chen, K., Effect of Damage on the Vibration Modal of a Novel Three-Dimensional and Four-Directional Braided Composite T-Beam, Composites Part B, Vol. 86, 2016, pp. 108–119, DOI: 10.1016/j.compositesb.2015.09.022.
  • Kordani, N., Fereidoon, A., and Ashoori, M., Damping Augmentation of Nanocomposites Using Carbon Nanotube/Epoxy, Structural Dynamics, Vol. 3, 2011, pp. 1605–1615, DOI: 10.1007/978-1-4419-9834-7_145.
  • Farrash, S. M. H., Shariati, M., and Rezaeepazhand, J., The Effect of Carbon Nanotube Dispersion on the Dynamic Characteristics of Unidirectional Hybrid Composites: An Experimental Approach, Composites Part B, Vol. 122, 2017, pp. 1–8, DOI: 10.1016/j.compositesb.2017.04.003.
  • Heshmati, M., Yas, M. H., and Daneshmand, F., A Comprehensive Study on the Vibrational Behavior of CNT-Reinforced Composite Beams, Composite Structures, Vol. 125, 2015, pp. 434–448, DOI: 10.1016/j.compstruct.2015.02.033.
  • Duarte, H. V., Donadon, L. V., and Avila, A. F., Mechanical Properties of Nanocomposite Laminated Structure and its Sensibility to Modal Analysis Procedure, Latin American Journal of Solids and Structures, Vol. 11, No. 2, 2014, pp. 245–259, DOI: 10.1590/S1679-78252014000200006.
  • Sanliturk, K. Y., Koruk, H., Development and Validation of a Composite Finite Element with Damping Capability, Composite Structures, Vol. 97, 2013, pp. 136–146, DOI: 10.1016/j.compstruct.2012.10.020.
  • Perez, M. A., Gil, L., Sanchez, M., and Oller, S., Comparative Experimental Analysis of the Effect Caused by Artificial and Real Induced Damage in Composite Laminates, Composite Structures, Vol. 112, 2014, pp. 169–178, DOI: 10.1016/j.compstruct.2014.02.017.
  • Perez, M. A., Gil, L., and Oller, S., Impact Damage Identification in Composite Laminates Using Vibration Testing, Composite Structures, Vol. 108, 2014, pp. 267–276, DOI: 10.1016/j.compstruct.2013.09.025.
  • Herman, A. P., Orifici, A. C., and Mouritz, A. P., Vibration Modal Analysis of Defects in Composite T-Stiffened Panels, Composite Structures, Vol. 104, 2013, pp. 34–42, DOI: 10.1016/j.compstruct.2013.04.012.